Skip to main content

Inhibition of Human Serine Racemase, an Emerging Target for Medicinal Chemistry

Buy Article:

$68.00 + tax (Refund Policy)

Proteins of glutamatergic NMDA receptor signaling pathways have been studied as targets for intervention in a variety of neuropathological conditions, including neurodegenerations, epilepsy, neuropathic pain, drug addiction, and schizophrenia. High activity NMDA-blocking agents have been designed to treat some of these disorders; however, their effect is often compromised by undesirable side effects. Therefore, alternative ways of modulating NMDA receptor function need to be sought after.

The opening of the NMDA receptor ion channel requires occupation of two distinct binding sites, the glutamate site and the glycine site. It has been shown that D-serine, rather than glycine, can trigger the physiological NMDA receptor function. D-serine is a product of the activity of a specific enzyme, serine racemase (SR), which was identified a decade ago. SR has therefore emerged as a new potential target for the NMDA-receptor-based diseases. There is evidence linking increased levels of D-Ser to amyotrophic lateral sclerosis and Alzheimer's disease and decreased concentrations of Dserine to schizophrenia.

SR is a pyridoxal-5'-phosphate dependent enzyme found in the cytosol of glial and neuronal cells. It is activated by ATP, divalent cations like Mg2+ or Ca2+, and reducing agents. This paper reviews the present literature on the activity and inhibition of mammalian SRs. It summarizes approaches that have been applied to design SR inhibitors and lists the known active compunds. Based on biochemical and docking analyses, i) we delineate for the first time the ATP binding site of human SR, ii) we suggest possible mechanisms of action for the active compounds. In the end, we discuss the SR features that make the discovery of its inhibitors a challenging, yet very important, task of medicinal chemistry.

Keywords: Alzheimer's disease; Amino acid analogs; D-serine; L-erythro-3-hydroxyaspartate (L-EHA); NMDA receptors; enzyme; neurodegenerative diseases; neuronal cells; pyridoxal-5'-phosphate (PLP); serine racemase

Document Type: Research Article

Publication date: 01 June 2011

More about this publication?
  • Current Drug Targets aims to cover the latest and most outstanding developments on the medicinal chemistry and pharmacology of molecular drug targets e.g. disease specific proteins, receptors, enzymes, genes. Each issue of the journal will be devoted to a single timely topic, with series of in-depth reviews, written by leaders in the field, covering a range of current topics on drug targets. These issues will be organized and led by a guest editor who is a recognized expert in the overall topic. As the discovery, identification, characterisation and validation of novel human drug targets for drug discovery continues to grow; this journal will be essential reading for all pharmaceutical scientists involved in drug discovery and development.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content