Skip to main content
padlock icon - secure page this page is secure

Pharmacological Strategies for Overcoming Multidrug Resistance

Buy Article:

$68.00 + tax (Refund Policy)

Multidrug resistance (MDR) is a major obstacle to the effective treatment of cancer. One of the underlying mechanisms of MDR is cellular overproduction of P-glycoprotein (P-gp) which acts as an efflux pump for various anticancer drugs. P-gp is encoded by the MDR1 gene and its overexpression in cancer cells has become a therapeutic target for circumventing multidrug resistance.

A potential strategy is to co-administer efflux pump inhibitors, although such reversal agents might actually increase the side effects of chemotherapy by blocking physiological anticancer drug efflux from normal cells.

Although many efforts to overcome MDR have been made using first and second generation reversal agents comprising drugs already in current clinical use for other indications (e.g. verapamil, cyclosporine A, quinidine) or analogues of the first-generation drugs (e.g. dexverapamil, valspodar, cinchonine), few significant advances have been made.

Clinical trials with third generation modulators (e.g. biricodar, zosuquidar, and laniquidar) specifically developed for MDR reversal are ongoing. The results however are not encouraging and it may be that the perfect reverser does not exist. Other approaches to multidrug resistance reversal have also been considered: encapsulation of anthracyclines in liposomes or other carriers which deliver these drugs selectively to tumor tissues, the use of P-gp targeted antibodies such as UIC2 or the use of antisense strategies targeting the MDR1 messenger RNA. More recently, the development of transcriptional regulators appears promising. Also anticancer drugs that belong structurally to classes of drugs extruded from cells by Pgp but that are not substrates of this drug transporter may act as potent inhibitors of MDR tumors (e.g. epothilones, second generation taxanes). Taking advantage of MDR has also been studied. Bone marrow suppression, one of the major side effects of cancer chemotherapy, can compromise the potential of curative and palliative chemotherapy. It is conceivable that drug resistance gene transfer into bone marrow stem cells may be able to reduce or abolish chemotherapy-induced myelosuppression and facilitate the use of high dose chemotherapy. Clinical trials of retroviral vectors containing drug resistance genes have established that the approach is safe and are now being designed to address the therapeutically relevant issues.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Keywords: MDR modulators; Neoplasms; multidrug resistance; p-glycoprotein

Document Type: Research Article

Affiliations: Department of Preclinical and Clinical Pharmacology, University of Florence, V.le Pieraccini, 6, 50139 Florence, Italy.

Publication date: July 1, 2006

More about this publication?
  • Current Drug Targets aims to cover the latest and most outstanding developments on the medicinal chemistry and pharmacology of molecular drug targets e.g. disease specific proteins, receptors, enzymes, genes. Each issue of the journal will be devoted to a single timely topic, with series of in-depth reviews, written by leaders in the field, covering a range of current topics on drug targets. These issues will be organized and led by a guest editor who is a recognized expert in the overall topic. As the discovery, identification, characterisation and validation of novel human drug targets for drug discovery continues to grow; this journal will be essential reading for all pharmaceutical scientists involved in drug discovery and development.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more