Skip to main content
padlock icon - secure page this page is secure

MDR1/P-Glycoprotein (ABCB1) as Target for RNA Interference-Mediated Reversal of Multidrug Resistance

Buy Article:

$68.00 + tax (Refund Policy)

Resistance of tumor cells to multiple structurally unrelated cytotoxic drugs, multidrug resistance (MDR), is the major limitation to the successful chemotherapeutic treatment of disseminated neoplasms. The "classical" MDR phenotype is the result from decreased cellular drug accumulation mediated by the adenosine triphosphate binding cassette (ABC)-transporter MDR1/P-glycoprotein (MDR1/P-gp, ABCB1) encoded by the human MDR1 gene. Inhibition of the drug extrusion activity of MDR1/P-gp by low-molecular weight pharmacologically active compounds as a method to reverse MDR in patients suffering on malignant diseases has been studied capaciously, but the clinical results have generally been disappointing. Thus, experimental therapeutic strategies to reverse MDR are under extensive investigation. These strategies included gene therapeutic approaches with antisense oligonucleotides (ODNs), ribozymes, or DNAzymes and, most recently, the application of the RNA interference (RNAi) technology. RNAi is a physiological double stranded RNA-triggered mechanism resulting in gene-silencing in a sequence-specific manner. Transient RNAi can be attained by application of small interferring RNAs (siRNAs), whereas a stable RNAi-mediated gene-silencing can be achieved by transfection of mammalian cells with short hairpin RNA (shRNA) encoding expression cassettes localized on plasmid or viral vectors. Transient and stable RNAi strategies were applied to overcome MDR1/P-gp-mediated MDR in different in vitro models derived from various neoplastic tissue and will be come up for discussion.





No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Keywords: MDR; RNAi; gene therapy; shRNA; siRNA

Document Type: Research Article

Affiliations: Charite Campus Mitte, Institute of Pathology, Schumannstr. 20/21, D-10117 Berlin, Germany.

Publication date: July 1, 2006

More about this publication?
  • Current Drug Targets aims to cover the latest and most outstanding developments on the medicinal chemistry and pharmacology of molecular drug targets e.g. disease specific proteins, receptors, enzymes, genes. Each issue of the journal will be devoted to a single timely topic, with series of in-depth reviews, written by leaders in the field, covering a range of current topics on drug targets. These issues will be organized and led by a guest editor who is a recognized expert in the overall topic. As the discovery, identification, characterisation and validation of novel human drug targets for drug discovery continues to grow; this journal will be essential reading for all pharmaceutical scientists involved in drug discovery and development.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more