Skip to main content

Emerging Role of microRNA in Neuropathic Pain

Buy Article:

$68.00 + tax (Refund Policy)

Background: Neuropathic pain is an incurable disease which is defined as a chronic pain caused by a disease or lesion of the nervous systems. Current treatments can provide a long-lasting pain relief only in a very limited number of patients with neuropathic pain. MicroRNA can regulate multiple genes and pathways involved in human diseases. This review focuses on: a) Molecular mechanisms of microRNA biogenesis. b) Targeting, modifications, and delivery of microRNAs. c) Aberrant expression of microRNAs and their potential therapeutic targets in neuropathic pain. d) Potential challenges of microRNA therapy in clinical practice, such as off-target effects, toxicity, delivery hurdles, and target prediction.

Results: This review introduces: 1. Canonical/non-canonical pathway of microRNA biogenesis. 2. Viral/non-viral vectors transporting microRNAs into target cells. 3. MicroRNA mimics/inhibitors targeting strategies. 4. Aberrantly expressed microRNAs in different animal neuropathic pain models and their links to underlying mechanisms such as inflammation and ion channel expression. 5. Potential challenges of microRNAs therapy such as off-target effect, pseudogenes, liver toxicity, delivery hurdles and target prediction.

Conclusion: Although using microRNAs to target neuropathic pain seem promising, their off-target/toxic effects and delivery hurdles still need to be surmounted.

Keywords: Delivery; mechanism; microRNA; neuropathic pain; side-effect; targeting

Document Type: Research Article

Publication date: 01 May 2016

More about this publication?
  • Current Drug Metabolism aims to cover all the latest and outstanding developments in drug metabolism and disposition. The journal serves as an international forum for the publication of timely reviews in drug metabolism. Current Drug Metabolism is an essential journal for academic, clinical, government and pharmaceutical scientists who wish to be kept informed and up-to-date with the latest and most important developments. The journal covers the following areas:

    In vitro systems including CYP-450; enzyme induction and inhibition; drug-drug interactions and enzyme kinetics; pharmacokinetics, toxicokinetics, species scaling and extrapolations; P-glycoprotein and transport carriers; target organ toxicity and interindividual variability; drug metabolism and disposition studies; extrahepatic metabolism; phase I and phase II metabolism; recent developments for the identification of drug metabolites and adducts.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content