Skip to main content
padlock icon - secure page this page is secure

Co-delivery Strategies Based on Multifunctional Nanocarriers for Cancer Therapy

Buy Article:

$68.00 + tax (Refund Policy)

Chemotherapy is among the most common means for clinicians in the fight against various types of tumors. However, severe toxicity with undesirable toxic effects against normal tissues and cells significantly hinders the applications of these chemotherapeutic agents and leads to multiple complications for patients. Recent developments of nanotechnology-enabled drug delivery platforms allow simultaneous delivery of multiple chemotherapeutic agents to target different metabolic pathways of tumor cells, thus providing new opportunities for higher therapeutic efficacy and lower cytotoxicity. Furthermore, multifunctional nanocarriers can also deliver diagnostic agents, including MRI contrast agents and fluorescent probes, to achieve cancer diagnosis and therapy at the same time. This present review discusses the various aspects of current co-delivery strategies and emphasizes the need for novel designs of biocompatible and non or low toxic nanocarriers. Further studies on potential adverse effects of various nanocarriers are warranted.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Keywords: Cancer; Chemotherapy; MRI; Nanocarriers; Nanotechnology; aptamers; co-delivery; co-delivery of drugs; cytotoxicity; multifunctional nanoparticles; peptides; siRNA; targeting; tumors

Document Type: Research Article

Publication date: October 1, 2012

More about this publication?
  • Current Drug Metabolism aims to cover all the latest and outstanding developments in drug metabolism and disposition. The journal serves as an international forum for the publication of timely reviews in drug metabolism. Current Drug Metabolism is an essential journal for academic, clinical, government and pharmaceutical scientists who wish to be kept informed and up-to-date with the latest and most important developments. The journal covers the following areas:

    In vitro systems including CYP-450; enzyme induction and inhibition; drug-drug interactions and enzyme kinetics; pharmacokinetics, toxicokinetics, species scaling and extrapolations; P-glycoprotein and transport carriers; target organ toxicity and interindividual variability; drug metabolism and disposition studies; extrahepatic metabolism; phase I and phase II metabolism; recent developments for the identification of drug metabolites and adducts.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more