Skip to main content

The SmartAmp Method: Rapid Detection of SNPs in Thiopurine S-Methyltransferase and ABC Transporters ABCC4 and ABCG2

Buy Article:

$68.00 + tax (Refund Policy)

Genetic polymorphisms of drug transporters as well as drug metabolizing enzymes have been documented to play a significant role in patients' responses to medication. A key requirement for advancing personalized medicine is the ability to rapidly and conveniently test for patients' genetic polymorphisms. We have recently developed a rapid and cost-effective method for single nucleotide polymorphism (SNP) detection, named Smart Amplification Process (SmartAmp), which enables us to detect genetic polymorphisms or mutations in 30 to 45 min under isothermal conditions without the need for DNA isolation and PCR amplification. This article presents the SmartAmp-based detection of SNPs in the thiopurine S-methyltransferase gene as well as in the ATP-binding cassette (ABC) transporter ABCC4 and ABCG2 genes that are critically involved in drug-induced adverse reactions. The SmartAmp method is expected to provide a practical and cost-effective tool for pharmacogenomics-based personalized medicine.

Keywords: ABC transporter; ABCC4; ABCG2; SNP; adverse reaction; gout; inflammatory bowel disease; thiopurine S-methyltransferase (TPMT)

Document Type: Research Article

Publication date: 01 September 2012

More about this publication?
  • Current Drug Metabolism aims to cover all the latest and outstanding developments in drug metabolism and disposition. The journal serves as an international forum for the publication of timely reviews in drug metabolism. Current Drug Metabolism is an essential journal for academic, clinical, government and pharmaceutical scientists who wish to be kept informed and up-to-date with the latest and most important developments. The journal covers the following areas:

    In vitro systems including CYP-450; enzyme induction and inhibition; drug-drug interactions and enzyme kinetics; pharmacokinetics, toxicokinetics, species scaling and extrapolations; P-glycoprotein and transport carriers; target organ toxicity and interindividual variability; drug metabolism and disposition studies; extrahepatic metabolism; phase I and phase II metabolism; recent developments for the identification of drug metabolites and adducts.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content