Skip to main content
padlock icon - secure page this page is secure

Signaling by Reactive Oxygen and Nitrogen Species in Skin Diseases

Buy Article:

$68.00 + tax (Refund Policy)

For many years the formation of reactive oxygen and nitrogen species (ROS) and (RNS) in living organisms has been considered to be dangerous phenomenon due to their damaging action on biomolecules. However, present studies demonstrated another important activity of ROS and RNS: their signaling functions in physiological and pathological processes. In this work we discuss the new data concerning a role of ROS and RNS in many enzymatic/gene cascades causing damaging changes during the development of skin diseases and pathological disorders (skin cancer, the toxic effects of irradiation on the skin, and skin wounding). It has been suggested that the enhancement of ROS formation in tumor cells through the inactivation of mitochondrial MnSOD or the activation of NADPH oxidase leads to apoptosis and might be applied for developing a new cancer therapy. On the other hand ROS overproduction might stimulate malignant transformation of melanoma. Role of ROS signaling is also considered in the damaging action of UVA, UVB, and IRA irradiation on the skin and the processes of wound healing. In the last part of review the possibility of the right choice of antioxidants and free radical scavengers for the treatment of skin disease is discussed.

No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Keywords: RNS; ROS; UV irradiation; skin cancer; wound healing

Document Type: Research Article

Publication date: June 1, 2010

More about this publication?
  • Current Drug Metabolism aims to cover all the latest and outstanding developments in drug metabolism and disposition. The journal serves as an international forum for the publication of timely reviews in drug metabolism. Current Drug Metabolism is an essential journal for academic, clinical, government and pharmaceutical scientists who wish to be kept informed and up-to-date with the latest and most important developments. The journal covers the following areas:

    In vitro systems including CYP-450; enzyme induction and inhibition; drug-drug interactions and enzyme kinetics; pharmacokinetics, toxicokinetics, species scaling and extrapolations; P-glycoprotein and transport carriers; target organ toxicity and interindividual variability; drug metabolism and disposition studies; extrahepatic metabolism; phase I and phase II metabolism; recent developments for the identification of drug metabolites and adducts.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more