Skip to main content
padlock icon - secure page this page is secure

Oxidative Biotransformation of Fatty Acids by Cytochromes P450: Predicted Key Structural Elements Orchestrating Substrate Specificity, Regioselectivity and Catalytic Efficiency

Buy Article:

$68.00 + tax (Refund Policy)

In view of the pivotal role played by the diversity of fatty acid-derived oxy-products in a vast array of physiological processes, precise knowledge about the molecular principles dictating substrate specificity and regioselectivity in P450-catalyzed oxidative attack on the distinctly structured carbon chains of the monocarboxylic acids is of paramount importance. Based on a general, CYP102A1- related construct, the majority of prospective key determinants participating in fatty acid recognition/binding were found to cluster near the distal heme face made up by the helical B', F, G and I tetrad as well as the B'-C interhelical loop and certain β-sheet segments. Most of the contact sites examined show a frequency of conservation <10%, hinting at the requirement of some degree of conformational flexibility. Some decisive elements may also have a function in maintaining active-site integrity, governing substrate access to the catalytic centre, and steering the redox machinery to efficiently promote fatty acid oxidations. Physico-chemical factors imposing constraints on orientation of the fatty acid molecules towards the iron-oxene core focus on the variably expressed polarity profile of the diverse docking regions and bulkiness of critical amino acid side chains, acting as selectivity filters for the substrate homologues. Also, dynamic fluctuations of certain contact sites located in the distal backbone of P450s may impact fatty acid positioning. Genetic engineering to introduce versatile properties into fatty acid hydroxylases may give an impetus to biotechnological exploitation of the tailored enzymes in the production of fine chemicals and therapeutic agents.





No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Keywords: Catalytic oxidations; Fatty acids; P450; Substrate docking

Document Type: Research Article

Publication date: January 1, 2010

More about this publication?
  • Current Drug Metabolism aims to cover all the latest and outstanding developments in drug metabolism and disposition. The journal serves as an international forum for the publication of timely reviews in drug metabolism. Current Drug Metabolism is an essential journal for academic, clinical, government and pharmaceutical scientists who wish to be kept informed and up-to-date with the latest and most important developments. The journal covers the following areas:

    In vitro systems including CYP-450; enzyme induction and inhibition; drug-drug interactions and enzyme kinetics; pharmacokinetics, toxicokinetics, species scaling and extrapolations; P-glycoprotein and transport carriers; target organ toxicity and interindividual variability; drug metabolism and disposition studies; extrahepatic metabolism; phase I and phase II metabolism; recent developments for the identification of drug metabolites and adducts.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more