Skip to main content

Interaction of the Isothiocyanate Sulforaphane with Drug Disposition and Metabolism: Pharmacological and Toxicological Implications

Buy Article:

$68.00 + tax (Refund Policy)

Isothiocyanates (ITCs) are sulfur-containing compounds that are broadly distributed among cruciferous vegetables such as cabbages and broccoli. The consumption of ITCs is expected to rise due to the use of dietary supplements and public health initiatives promoting the consumption of more fruits and vegetables. Sulforaphane (SFN) is by far the most widely studied and characterized ITC. SFN is extensively metabolized and can therefore compete with other substrates of Phases I, II, III enzymes and transporters. In addition, it has an unusually high potency as an inducer of phase II enzymes and regulates the expression and function of different cytochrome P-450 genes. Such effects can be beneficial and may indicate a mechanism for the preventive role that SFN is believed to play against the degenerative events of aging and chronic diseases. Furthermore, these gene induction effects and the interaction with detoxification responses can modify bioavailability and in vivo bioactivity of drugs. This review will discuss 1) the metabolism of ITCs using SFN as an example, 2) inhibition of drug metabolism by SFN, and 3) induction of drug metabolizing enzymes by SFN. The potential pharmacological and toxicological implications of these effects on drug metabolism will also be discussed.





Keywords: NF-E2-related factor 2; Sulforaphane; antioxidant activity; cancer chemotherapy; cytochrome P-450; drug metabolizing enzymes; glutathione-S-transferase; isothiocyanates

Document Type: Research Article

Publication date: 01 September 2008

More about this publication?
  • Current Drug Metabolism aims to cover all the latest and outstanding developments in drug metabolism and disposition. The journal serves as an international forum for the publication of timely reviews in drug metabolism. Current Drug Metabolism is an essential journal for academic, clinical, government and pharmaceutical scientists who wish to be kept informed and up-to-date with the latest and most important developments. The journal covers the following areas:

    In vitro systems including CYP-450; enzyme induction and inhibition; drug-drug interactions and enzyme kinetics; pharmacokinetics, toxicokinetics, species scaling and extrapolations; P-glycoprotein and transport carriers; target organ toxicity and interindividual variability; drug metabolism and disposition studies; extrahepatic metabolism; phase I and phase II metabolism; recent developments for the identification of drug metabolites and adducts.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content