Skip to main content
padlock icon - secure page this page is secure

Quantitative Correlations Among CYP3A Sensitive Substrates and Inhibitors:Literature Analysis

Buy Article:

$68.00 + tax (Refund Policy)

As a follow-up to the new classification of CYP3A inhibitors, the present work was undertaken to search for quantitative correlations of AUC ratios between sensitive substrates and midazolam (reference). A large set of clinical studies was obtained utilizing the M&T Drug Interaction Database™, and recent Product Labels. Linear relationships were found between midazolam and four CYP3A substrates: simvastatin, buspirone, triazolam and eplerenone. Simvastatin and buspirone were consistently more sensitive than midazolam, independent of the inhibitor. Quantitative correlations of AUC ratios between four CYP3A inhibitors (fluconazole, erythromycin, verapamil, diltiazem) and ketoconazole (400 mg/day) were also uncovered. The average potencies of these inhibitors relative to ketoconazole were 27% for erythromycin, 17% for fluconazole and 19% for verapamil.

No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Keywords: Cytochrome P450 CYP3A; drug-drug interactions; inhibition

Document Type: Research Article

Publication date: December 1, 2007

More about this publication?
  • Current Drug Metabolism aims to cover all the latest and outstanding developments in drug metabolism and disposition. The journal serves as an international forum for the publication of timely reviews in drug metabolism. Current Drug Metabolism is an essential journal for academic, clinical, government and pharmaceutical scientists who wish to be kept informed and up-to-date with the latest and most important developments. The journal covers the following areas:

    In vitro systems including CYP-450; enzyme induction and inhibition; drug-drug interactions and enzyme kinetics; pharmacokinetics, toxicokinetics, species scaling and extrapolations; P-glycoprotein and transport carriers; target organ toxicity and interindividual variability; drug metabolism and disposition studies; extrahepatic metabolism; phase I and phase II metabolism; recent developments for the identification of drug metabolites and adducts.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more