Skip to main content
padlock icon - secure page this page is secure

Metabolic Activation of Herbal and Dietary Constituents and Its Clinical and Toxicological Implications: An Update

Buy Article:

$68.00 + tax (Refund Policy)

In recent years, there has been a globally increasing application of herbal medicines and dietary supplements to treat various chronic diseases and to promote health. However, there are increasing clinical reports on the organ toxicities associated with consumption of herbal medicines. This review updates the knowledge on metabolic activation of herbal components and its clinical and toxicological implications. Like many synthetic drugs undergoing metabolic activation to form reactive metabolites which are often associated with drug toxicity, it is recognized that some herbal components may also be converted to toxic, or even mutagenetic and carcinogenic metabolites by cytochrome P450s (CYPs) and less frequently by Phase II conjugating enzymes. This is exemplified by aristolochic acids (AAs) in Aristolochia spp, which undergo reduction of the nitro group by hepatic CYP1A1/2 or peroxidases in extrahepatic tissues to generate highly reactive cyclic nitrenium ions. The latter can react with macromolecules (DNA and protein), resulting in activation of Hras oncogene and gene mutation in renal cells and finally carcinogenesis of the kidneys. Some naturally occurring flavonoids (e.g. quercetin) and alkenylbenzenes (e.g. safrole, methyleugenol and estragole) can undergo metabolic activation by sequential 1-hydroxylation and sulfation, resulting in reactive intermediates capable of forming DNA adducts and finally genotoxicity. Additional examples are pulegone present in essential oils from many mint species; and teucrin A, a diterpenoid found in germander (Teuchrium chamaedrys) used as an adjuvant to slimming dietary supplements but caused severe hepatotoxicity. Extensive pulegone metabolism generated pcresol that was a glutathione depletory, whereas the furan ring of the diterpenoids in germander was oxidized by CYP3A4 to reactive epoxide which can inactivate hepatic CYP3A and epoxide hydrolase through covalent binding. The hepatotoxic and carcinogenic species of plant pyrrolizidine alkaloids (e.g. echimidine and jacobine), namely pyrrole-type metabolites, are generated by hepatic CYP2B6 and CYP3A4. Potential mechanisms underlying the hepatotoxicity of kava have been related to intracellular glutathione depletion and/or quinone formation. Some herbal constituents (e.g. capsaicin from chili peppers, glabridin from licorice root, oleuropein in olive oil, dially sulfone in garlic, and resveratrol found in red wine) behave as mechanism-based inhibitors of various CYPs. This may provide an explanation for some reported herb-drug interactions. In addition, the inhibition of CYPs by herbal constituents may decrease the formation of toxic metabolites and thus inhibit carcinogenesis, as CYPs play an important role in procarcinogen activation. Due to the wide use and easy availability of herbal medicines, further research should be conducted to ensure the safety and quality of herbal medicine.

No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Keywords: Herbal medicines; chemoprevention; cytochrome P450; metabolic activation; toxicity

Document Type: Research Article

Publication date: August 1, 2007

More about this publication?
  • Current Drug Metabolism aims to cover all the latest and outstanding developments in drug metabolism and disposition. The journal serves as an international forum for the publication of timely reviews in drug metabolism. Current Drug Metabolism is an essential journal for academic, clinical, government and pharmaceutical scientists who wish to be kept informed and up-to-date with the latest and most important developments. The journal covers the following areas:

    In vitro systems including CYP-450; enzyme induction and inhibition; drug-drug interactions and enzyme kinetics; pharmacokinetics, toxicokinetics, species scaling and extrapolations; P-glycoprotein and transport carriers; target organ toxicity and interindividual variability; drug metabolism and disposition studies; extrahepatic metabolism; phase I and phase II metabolism; recent developments for the identification of drug metabolites and adducts.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more