Skip to main content

Induction of Cytochrome P450 3A4 and P-Glycoprotein by the Isoxazolyl- Penicillin Antibiotic Flucloxacillin

Buy Article:

$68.00 + tax (Refund Policy)

Clinical findings indicate that co-administration of the isoxazolyl-penicillin flucloxacillin with cyclosporine may reduce the plasma concentrations of cyclosporine. We have explored in the present study if induction of cytochrome P450 3A4 or P-glycoprotein may offer a mechanistic explanation of the observed effects. Flucloxacillin is neither an inhibitor nor a substrate of drug metabolizing cytochrome P450 isoenzymes (CYP3A4, 1A2, 2C9, 2C19 and 2D6) or Pglycoprotein as shown by an in vitro assay for CYP inhibition, a fluorescent indicator assay for P-glycoprotein inhibition and a functional P-glycoprotein ATPase assay. However, incubation of human LS 180 colorectal adenocarcinoma cells with flucloxacillin led to a dose-dependent induction of MDR1 as well as of CYP3A4 mRNA, which was also confirmed in primary human hepatocytes. At high concentrations, flucloxacillin activated the human Pregnane-X-Receptor, PXR, a ligand-dependent transcription factor that is the target of many drugs that induce CYP3A4, with consequences for the metabolism of other drugs. Liver microsomes from control rats or rats, which received for 3 consecutive days 100 mg/kg of oral flucloxacillin, were used to study the metabolism and metabolite pattern of midazolam, a model substrate of CYP 3A4. There was a trend towards a higher intrinsic microsomal clearance of midazolam using microsomes from flucloxacillin treated rats. In addition, there was a significant increase in the formation of the principal midazolam metabolites 1- hydroxy midazolam, 4-hydroxy midazolam and 1,4-dihydroxy midazolam as compared to controls. These findings indicate that flucloxacillin has the potential to induce expression of both CYP3A4 as well as P-glycoprotein, most likely through activation of the nuclear hormone receptor PXR. This would offer an explanation for the observed clinical drugdrug interactions between the antibiotic and cyclosporine.





Keywords: CYP3A4; Flucloxacillin; P-glycoprotein; cyclosporine; cytochrome P450; drug-drug interactions; floxapen; induction

Document Type: Research Article

Affiliations: University Hospital, Division of Clinical Pharmacology, Petersgraben 4, CH-4031 Basel, Switzerland.

Publication date: 01 February 2006

More about this publication?
  • Current Drug Metabolism aims to cover all the latest and outstanding developments in drug metabolism and disposition. The journal serves as an international forum for the publication of timely reviews in drug metabolism. Current Drug Metabolism is an essential journal for academic, clinical, government and pharmaceutical scientists who wish to be kept informed and up-to-date with the latest and most important developments. The journal covers the following areas:

    In vitro systems including CYP-450; enzyme induction and inhibition; drug-drug interactions and enzyme kinetics; pharmacokinetics, toxicokinetics, species scaling and extrapolations; P-glycoprotein and transport carriers; target organ toxicity and interindividual variability; drug metabolism and disposition studies; extrahepatic metabolism; phase I and phase II metabolism; recent developments for the identification of drug metabolites and adducts.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content