Skip to main content
padlock icon - secure page this page is secure

Gene-Nutrient Interactions in One-Carbon Metabolism

Buy Article:

$68.00 + tax (Refund Policy)

Advances in molecular biology greatly contributed, in the past decades, to a deeper understanding of the role of gene function in disease development. Environmental as well as nutritional factors are now well acknowledged to interact with the individual genetic background for the development of several diseases, including cancer, cardiovascular disease, and neurodegenerative diseases. The precise mechanisms of such gene-nutrient interactions, however, are not fully elucidated yet. Many micronutrients and vitamins are crucial in regulating mechanisms of DNA metabolism. Indeed, folate has been most extensively investigated for its unique function as mediator for the transfer of one-carbon moieties for nucleotide synthesis / repair and biological methylation. Cell culture, animal, and human studies, clearly demonstrated that folate deficiency induces disruption of DNA synthesis / repair pathways as well as DNA methylation anomalies. Remarkably, a gene-nutrient interaction between folate status and a polymorphism in methylenetetrahydrofolate reductase gene has been reported to modulate genomic DNA methylation. This observation suggests that the interaction between a nutritional status and a mutant genotype may modulate gene expression through DNA methylation, especially when such polymorphism affects a key enzyme in one-carbon metabolism and limits the methyl supply. DNA methylation, both genome-wide and gene-specific, is of particular interest for the study of aging, cancer, and other pathologic conditions, because it affects gene expression without permanent alterations in the DNA sequence such as mutations or allele deletions. Understanding the patterns of DNA methylation through the interaction with nutrients is a critical issue, not only to provide pathophysiological explanations of a disease state, but also to identify individuals at-risk to conduct targeted diet-based interventions.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Keywords: b vitamins; dna methylation; epigenetics; folate; gene-nutrient interaction; mthfr; one-carbon metabolism

Document Type: Review Article

Affiliations: Department of Clinical and Experimental Medicine, University of Verona School of Medicine, Policlinico Giambattista Rossi, P. le L.A. Scuro, 10, 37134 Verona, Italy.

Publication date: February 1, 2005

More about this publication?
  • Current Drug Metabolism aims to cover all the latest and outstanding developments in drug metabolism and disposition. The journal serves as an international forum for the publication of timely reviews in drug metabolism. Current Drug Metabolism is an essential journal for academic, clinical, government and pharmaceutical scientists who wish to be kept informed and up-to-date with the latest and most important developments. The journal covers the following areas:

    In vitro systems including CYP-450; enzyme induction and inhibition; drug-drug interactions and enzyme kinetics; pharmacokinetics, toxicokinetics, species scaling and extrapolations; P-glycoprotein and transport carriers; target organ toxicity and interindividual variability; drug metabolism and disposition studies; extrahepatic metabolism; phase I and phase II metabolism; recent developments for the identification of drug metabolites and adducts.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more