Skip to main content
padlock icon - secure page this page is secure

Classic Histamine H1 Receptor Antagonists: A Critical Review of their Metabolic and Pharmacokinetic Fate from a Bird's Eye View

Buy Article:

$68.00 + tax (Refund Policy)

The so-called “classic” histamine H1 receptor antagonists are highly lipophilic compounds associated with significant biotransformation and tissue distribution. They are categorized according to their chemical structure into ethanolamines, alkylamines, ethylenediamines, piperazines, phenothiazines and piperidines, all of which have characteristic metabolic fates. The former four categories undergo primarily cytochrome P450-mediated oxidative Ndesalkylations and deamination whereas the aromatic rings of the latter two undergo P450-mediated oxidative hydroxylation and / or epoxide formation. The common tertiary amino group is susceptible to oxidative metabolism by flavin containing monooxygenases forming N-oxides, and the alicyclic tertiary amines produce small amounts (up to 7%) of N-glucuronides in humans. Species, sex and racial differences in the metabolism and pharmacokinetics of antihistamines are known. Specific P450-isozymes implicated in the metabolism were identified in a few cases, such as CYP2D6 that contributes to the metabolism of promethazine, diphenhydramine and chlorpheniramine. Low circulating plasma concentrations of antihistamines are in part explained by significant first-pass effect and tissue distribution. Antihistaminic effects last up to 6 hours though some compounds exhibit a longer duration of action due to circulating active metabolites. Importantly, diphenhydramine inhibited CYP2D6 leading to a clinically significant drug-drug interaction with metoprolol. Other classic antihistamines were shown to be potent in vitro inhibitors of CYP2D6 and CYP3A4. The prescription-free access to most classic antihistamines can easily lead to their co-administration with other drugs metabolized by the same enzyme system thereby leading to drug accumulation and adverse effects. In depth knowledge of the metabolic pathways of classic antihistamines and the enzymes involved is crucial to prevent the high incidence of drug interactions in humans, which are predictable based on pre-clinical data but unexpected when such data is unavailable.

No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Keywords: classic antihistamines; cytochrome p450s; flavin-monooxygenases; glucuronidation; metabolism; pharmacokinetics

Document Type: Review Article

Publication date: April 1, 2003

More about this publication?
  • Current Drug Metabolism aims to cover all the latest and outstanding developments in drug metabolism and disposition. The journal serves as an international forum for the publication of timely reviews in drug metabolism. Current Drug Metabolism is an essential journal for academic, clinical, government and pharmaceutical scientists who wish to be kept informed and up-to-date with the latest and most important developments. The journal covers the following areas:

    In vitro systems including CYP-450; enzyme induction and inhibition; drug-drug interactions and enzyme kinetics; pharmacokinetics, toxicokinetics, species scaling and extrapolations; P-glycoprotein and transport carriers; target organ toxicity and interindividual variability; drug metabolism and disposition studies; extrahepatic metabolism; phase I and phase II metabolism; recent developments for the identification of drug metabolites and adducts.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more