Skip to main content
padlock icon - secure page this page is secure

Mechanism of Idiosyncratic Drug Reactions: Reactive Metabolites Formation, Protein Binding and the Regulation of the Immune System

Buy Article:

$68.00 + tax (Refund Policy)

Drug-induced adverse reactions, especially type B reactions, represent a major clinical problem. They also impart a significant degree of uncertainty into drug development because they are often not detected until the drug has been released onto the market. Type B reactions are also termed idiosyncratic drug reactions by many investigators due to their unpredictable nature and our lack of understanding of the mechanisms involved. It is currently believed that the majority of these reactions are immune-mediated and are caused by immunogenic conjugates formed from the reaction of a reactive metabolite of a drug with cellular proteins. It has been shown that most drugs associated with idiosyncratic reactions form reactive metabolites to some degree. Covalent binding of reactive metabolites to cellular proteins has also been shown in many cases. However, studies to reveal the role of reactive metabolites and their protein-adducts in the mechanism of drug-induced idiosyncratic reactions are lacking. This review will focus on our current understanding and speculative views on how a reactive metabolite of a drug might ultimately lead to immune-mediated toxicity
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Keywords: idiosyncratic; type b reaction

Document Type: Review Article

Publication date: August 1, 2002

More about this publication?
  • Current Drug Metabolism aims to cover all the latest and outstanding developments in drug metabolism and disposition. The journal serves as an international forum for the publication of timely reviews in drug metabolism. Current Drug Metabolism is an essential journal for academic, clinical, government and pharmaceutical scientists who wish to be kept informed and up-to-date with the latest and most important developments. The journal covers the following areas:

    In vitro systems including CYP-450; enzyme induction and inhibition; drug-drug interactions and enzyme kinetics; pharmacokinetics, toxicokinetics, species scaling and extrapolations; P-glycoprotein and transport carriers; target organ toxicity and interindividual variability; drug metabolism and disposition studies; extrahepatic metabolism; phase I and phase II metabolism; recent developments for the identification of drug metabolites and adducts.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more