Skip to main content
padlock icon - secure page this page is secure

Turnover Studies on Cardiac Natriuretic Peptides: Methodological, Pathophysiological and Therapeutical Considerations

Buy Article:

$68.00 + tax (Refund Policy)

Cardiac natriuretic peptide hormones (ANP and BNP) are synthesized and secreted by the heart, producing several biological effects, such as natriuresis, vasorelaxation, hypotension, and neuromodulation. Extensive studies conducted in both animals and humans have documented that cardiac natriuretic peptides (CNPs) are secreted into the circulatory system via the coronary sinus into the right atrium, and then rapidly degraded and removed from the blood by plasma proteases and specific clearance receptors. Usually, studies of CNPs kinetics have been carried out following an experimental protocol in which labeled or unlabeled hormone is administered (by constant infusion or bolus injection) and the corresponding concentration of the hormone is measured in peripheral venous blood. However, when a uniform intravascular concentration throughout artero-venous vessels is lacking due to the very rapid clearance of the substance being studied (such as CNPs), the classical compartmental or non compartmental approach may not be suitable for interpreting the experimental data. In this case, a more physiological circulatory model, which does not assume a uniform intravascular distribution of the hormone and comprises several anatomo-functional blocks arranged in a series and supplied by the same flow (cardiac ouput) should be adopted. Different experimental designs (infusion or bolus injection) as well as multiple sampling sites (aorta and pulmonary artery, inferior vena cava, femoral vein) were used in ANP kinetic studies. Using a circulatory approach, ANP has been demonstrated to be rapidly distributed and degraded in healthy subjects about 50percent of ANP secreted into the right atrium is extracted by the peripheral tissues during the first pass throughout the body. Since CNPs have important fluid-volume regulatory features, it has been postulated that they also play a key role in volume homeostasis in several pathophysiological states, such as congestive heart failure. Indeed, a markedly altered degradation and distribution of ANP in patients with cardiac failure who show a resistance to its natriuretic effects, even in those on the early stage of clinical disease, whose CNPs plasma levels are in the normal range, have been demonstrated. Recent studies indicate that some drugs, by inhibiting the degradation of CNPs by plasma proteases and can thus affect CNP kinetics, may be useful in the treatment of arterial hypertension and cardiac failure.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Keywords: CNPs; Cardiac Natriuretic peptides; Cardiac natriuretic peptide hormones; Plasma proteases; Volume homeostasis

Document Type: Review Article

Publication date: July 1, 2000

More about this publication?
  • Current Drug Metabolism aims to cover all the latest and outstanding developments in drug metabolism and disposition. The journal serves as an international forum for the publication of timely reviews in drug metabolism. Current Drug Metabolism is an essential journal for academic, clinical, government and pharmaceutical scientists who wish to be kept informed and up-to-date with the latest and most important developments. The journal covers the following areas:

    In vitro systems including CYP-450; enzyme induction and inhibition; drug-drug interactions and enzyme kinetics; pharmacokinetics, toxicokinetics, species scaling and extrapolations; P-glycoprotein and transport carriers; target organ toxicity and interindividual variability; drug metabolism and disposition studies; extrahepatic metabolism; phase I and phase II metabolism; recent developments for the identification of drug metabolites and adducts.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more