Skip to main content

Open Access Implementing Central Composite Design for Developing Transdermal Diacerein-Loaded Niosomes: Ex vivo Permeation and In vivo Deposition

Background: Niosomes are surfactant-based vesicular nanosystems that proved their efficiency in transdermal delivery by overcoming skin inherent anatomic barrier; startum corneum. Central composite design is an efficient tool for developing and optimizing niosomal formulations using fewer experiments.

Objective: The objective of this study was to prepare niosomes as a transdermal delivery system of diacerein using film hydration technique, employing central composite design, for avoiding its oral gastrointestinal problems.

Methods: Three-level three-factor central composite design was employed for attaining optimal niosomes formulation with the desired characteristics. Three formulation variables were assessed: amount of salt in hydration medium (X1), lipid amount (X2) and number of surfactant parts (X3). DCNloaded niosomes were evaluated for entrapment efficiency percent (Y1), particle size (Y2), polydispersity index (Y3) and zeta potential (Y4). The suggested optimal niosomes were subjected to further characterization and utilized as a nucleus for developing elastic vesicles for comparative ex vivo and in vivo studies.

Results: The values of the independent variables (X1, X2 and X3) in the optimal niosomes formulation were 0 g, 150 mg and 5 parts, respectively. It showed entrapment efficiency percentage of 95.63%, particle size of 436.65 nm, polydispersity index of 0.47 and zeta potential of -38.80 mV. Results of ex vivo permeation and skin deposition studies showed enhanced skin permeation and retention capacity of the prepared vesicles than drug suspension.

Conclusion: Results revealed that a transdermal niosomal system was successfully prepared and evaluated using central composite design which will result in delivering diacerein efficiently, avoiding its oral problems.

Keywords: Diacerein; central composite; ex vivo permeation; niosomes; optimization; skin deposition studies

Document Type: Research Article

Publication date: 01 November 2018

This article was made available online on 18 July 2018 as a Fast Track article with title: "Implementing Central Composite Design for Developing Transdermal Diacerein-Loaded Niosomes: Ex vivo Permeation and In vivo Deposition".

More about this publication?
  • The aim of Current Drug Delivery is to publish peer-reviewed articles, short communications, short and in-depth reviews in the rapidly developing field of drug delivery. Modern drug research aims to build in delivery properties of a drug at the design phase, however in many cases this ideal cannot be met and the development of delivery systems becomes as important as the development as the drugs themselves.

    The journal aims to cover the latest outstanding developments in drug and vaccine delivery employing physical, physico-chemical and chemical methods. The drugs include a wide range of bioactive compounds from simple pharmaceuticals to peptides, proteins, nucleotides, nucleosides and sugars. The journal will also report progress in the fields of transport routes and mechanisms including efflux proteins and multi-drug resistance.

    The journal is essential for all pharmaceutical scientists involved in drug design, development and delivery.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content