Skip to main content

Production and Characterization of Nanoparticle Based Hyaluronate Gel Containing Retinyl Palmitate for Wound Healing

Buy Article:

$68.00 + tax (Refund Policy)

Background: Wound healing is a biological process that can get in a state of pathologic inflammation, requiring the use of specific medications able to promote proper tissue repair.

Objective: The study describes the production and characterization of nanoparticle based gel for wound healing treatment designed to deliver hyaluronic acid and retinyl palmitate onto the skin.

Methods: Tristearin solid lipid nanoparticles and nanostructured lipid carriers based on a tristearin and caprylic/capric triglyceride mixture were produced and characterized. Gel spreadability and viscosity were investigated. Drug diffusion and “in vitro” wound healing were assessed by Franz cell and scratch wound assay in keratinocytes.

Results: Cryogenic transmission electron microscopy evidenced flat discoid nanoparticles. Photon correlation spectroscopy analysis indicated homogeneous dimensional distribution and mean diameter 132±46 nm. X-ray evidenced a lamellar inner structure of lipid nanoparticles. Nanostructured lipid carriers, being based on a heterogeneous solid/ liquid lipid mixture, could better solubilize retinyl palmitate and control its stability. The hyaluronic acid directly added into nanoparticles' dispersion enabled to obtain a shear-thinning gel suitable for cutaneous administration. Retynil palmitate diffusion was slower from the nanoparticulate gel with respect to the plain nanoparticle dispersion. The “wound healing” effect of nanoparticulate gel containing retinyl palmitate and hyaluronic acid, analyzed in HaCaT cells, showed significant differences in wounded areas between treated and control cells during the first 24 h postwounding suggesting a synergic effect of retinyl palmitate and hyaluronic acid in “in vitro” wound healing.

Conclusions: This study suggests that a nanoparticle based hyaluronate gel containing retinyl palmitate can be efficiently used for wound healing.

Keywords: HaCaT; Retinyl palmitate; cryogenic; cyclinD1; hyaluronic acid; solid lipid nanoparticles

Document Type: Research Article

Publication date: 01 October 2018

This article was made available online on 12 June 2018 as a Fast Track article with title: "Production and Characterization of Nanoparticle Based Hyaluronate Gel Containing Retinyl Palmitate for Wound Healing".

More about this publication?
  • The aim of Current Drug Delivery is to publish peer-reviewed articles, short communications, short and in-depth reviews in the rapidly developing field of drug delivery. Modern drug research aims to build in delivery properties of a drug at the design phase, however in many cases this ideal cannot be met and the development of delivery systems becomes as important as the development as the drugs themselves.

    The journal aims to cover the latest outstanding developments in drug and vaccine delivery employing physical, physico-chemical and chemical methods. The drugs include a wide range of bioactive compounds from simple pharmaceuticals to peptides, proteins, nucleotides, nucleosides and sugars. The journal will also report progress in the fields of transport routes and mechanisms including efflux proteins and multi-drug resistance.

    The journal is essential for all pharmaceutical scientists involved in drug design, development and delivery.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content