Skip to main content
padlock icon - secure page this page is secure

mPEG-PLA Micelle for Delivery of Effective Parts of Andrographis Paniculata

Buy Article:

$68.00 + tax (Refund Policy)

Background: Many studies have shown that Andrographis paniculata (Burm. f.) Nees has a good anti-tumor effect, but poor solubility in water and poor bioavailability hinder the modernization of it.

Method: To formulate the effective parts (mainly diterpene lactones) of Andrographis paniculata (AEP) into targeting drug delivery system, a series of poly(ethylene glycol)-poly(D.L-lactic acid)(mPEG-PLA) with different ratio of hydrophilic and hydrophobic segment was synthetized to encapsulate AEP. AEP micelles were prepared by a simple solvent-evaporation method. According to the loading capacity, the best polymer was chosen. mPEG-PLA micelles were characterized in terms of drug entrapping efficiency, loading capacity, size, the crystalline state of AEP, stability and release profile. Meanwhile, the cytotoxicity of micelles on mouse breast cancer 4T-1 was investigated.

Results: These micelle (mPEG-PLA-AEP) particles had a size of (92.84±5.63) nm and a high entrapping efficiency and loading capacity of (91.00±11.53)% and (32.14±3.02)%(w/w), respectively. The powder DSC showed that drugs were well encapsulated in the core of micelles. mPEG-PLA-AEP had a good stability against salt dissociation, protein adsorption and anion substitution and the solubility of andrographolide (AG) and 14-deoxy-11,12-didehydroandrographolide(DDAG) in AEP increased 4.51 times and 2.12 times in water, and the solubility of DAG showed no difference. mPEG-PLA-AEP had the same release profile in different dissolution medium. Cytotoxicity testing in vitro demonstrated that mPEG-PLA-AEP exhibited higher cell viability inhibition in mouse breast cancer 4T-1 than free AEP.

Conclusion: mPEG-PLA micelles offer a promising alternative for TCM therapy with higher solubility and improved antitumor effect.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Keywords: Andrographis paniculata; cell cytotoxicity; drug entrapping efficiency; drug loading capacity; micelle; size; solubility; stability

Document Type: Research Article

Publication date: May 1, 2018

This article was made available online on December 19, 2017 as a Fast Track article with title: "mPEG-PLA Micelle for Delivery of Effective Parts of Andrographis Paniculata".

More about this publication?
  • The aim of Current Drug Delivery is to publish peer-reviewed articles, short communications, short and in-depth reviews in the rapidly developing field of drug delivery. Modern drug research aims to build in delivery properties of a drug at the design phase, however in many cases this ideal cannot be met and the development of delivery systems becomes as important as the development as the drugs themselves.

    The journal aims to cover the latest outstanding developments in drug and vaccine delivery employing physical, physico-chemical and chemical methods. The drugs include a wide range of bioactive compounds from simple pharmaceuticals to peptides, proteins, nucleotides, nucleosides and sugars. The journal will also report progress in the fields of transport routes and mechanisms including efflux proteins and multi-drug resistance.

    The journal is essential for all pharmaceutical scientists involved in drug design, development and delivery.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more