Skip to main content
padlock icon - secure page this page is secure

Formulation Optimization and In-vitro and In-vivo Evaluation of Lornoxicam Ethosomal Gels with Penetration Enhancers

Buy Article:

$68.00 + tax (Refund Policy)

Background: Ethosomes, a novel type of percutaneous drug delivery carrier with a lipid bilayer structure, penetrate the skin barrier due to their deformability and malleability, and presence of ethanol that fluidizes lipids in the skin. In order to further enhance the delivery of drugs through the skin, penetration enhancers are widely used.

Objective: The objective of this work was to develop an optimized formulation of lornoxicam ethosomal gels, investigate skin permeability with the addition of penetration enhancers, and evaluate the invivo pharmacodynamics of these formulations.

Methods: Lornoxicam ethosomes were prepared by the ethanol injection method and optimized using the orthogonal design method. Lornoxicam ethosomal gels with enhancers were prepared and optimized using in-vitro transdermal delivery experiments. Experiments on lornoxicam ethosomal gels containing various enhancers such as azone, menthol, lauryl alcohol, and oleic acid were conducted using vertical Franz diffusion cells to measure the percutaneous permeability of the different formulations. Furthermore, the in-vivo analgesic effects of the optimized lornoxicam ethosomal gels were examined using the hot-plate and acetic acid-induced writhing tests. Anti-inflammatory activity was investigated using the dimethylbenzene-induced mouse ear swelling method.

Results: The results showed that compared to other formulations, the optimized lornoxicam ethosomal gels with 5 % menthol significantly increased transdermal penetration. Meanwhile, the optimized lornoxicam ethosomal gels showed remarkably anti-nociceptive and anti-inflammatory activity compared with the plain lornoxicam gels.

Conclusion: These results suggest that the optimized ethosomal gel formulated in this study is a promising lornoxicam carrier in transdermal delivery systems to enhance anti-nociceptive and antiinflammatory efficiency.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Keywords: Ethosomal gels; analgesic; anti-inflammatory activity; enhancers; lornoxicam; transdermal delivery

Document Type: Research Article

Publication date: March 1, 2018

This article was made available online on December 26, 2017 as a Fast Track article with title: "Formulation Optimization and In vitro and In vivo Evaluation of Lornoxicam Ethosomal Gels with Penetration Enhancers".

More about this publication?
  • The aim of Current Drug Delivery is to publish peer-reviewed articles, short communications, short and in-depth reviews in the rapidly developing field of drug delivery. Modern drug research aims to build in delivery properties of a drug at the design phase, however in many cases this ideal cannot be met and the development of delivery systems becomes as important as the development as the drugs themselves.

    The journal aims to cover the latest outstanding developments in drug and vaccine delivery employing physical, physico-chemical and chemical methods. The drugs include a wide range of bioactive compounds from simple pharmaceuticals to peptides, proteins, nucleotides, nucleosides and sugars. The journal will also report progress in the fields of transport routes and mechanisms including efflux proteins and multi-drug resistance.

    The journal is essential for all pharmaceutical scientists involved in drug design, development and delivery.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more