Skip to main content
padlock icon - secure page this page is secure

pH-Dependent Behavior of Novel Gellan Beads Loaded with Naproxen

Buy Article:

$68.00 + tax (Refund Policy)

Background: Oral administration of non-selective COX inhibitors involves the risk of serious side-effects. In the case of naproxen (NPX), the most frequent are those related to malfunctioning of the gastric mucosa. On the other hand, NPX and other NSAIDs are extensively studied in terms of colorectal cancer (CRC) prevention and inhibition, since it has been evidenced that COX-2 corresponds with the risk of the tumor occurrence and growth. Both side-effects in the stomach and possible antitumor activity of NPX justify the attempts to search for novel carriers for NPX with the site specific release in the colon. Thus, the aim of the work was to design, formulate and characterize low-acyl gellan gum (GG) macro beads as potential carriers for the delivery of NPX to the distal parts of the gastrointestinal tract.

Methods: The beads were obtained by the ionotropic gelation technique. CaCl2 solution was used as a cross-linking medium. After production, the beads were dried and used for further experiments. First, pure NPX and the beads were evaluated by Raman spectroscopy and DSC studies. The surface and morphology of the beads were analyzed by SEM. Next, the drug encapsulation efficiency and content in the beads were determined. The swelling and degradation behavior of the beads were evaluated in four simulated gastrointestinal fluids at different pH (1.2; 4.5; 6.8 and 7.4). The NPX in vitro release studies were conducted on USP I apparatus (rotating basket) at pH=7.4 and compared to the commercial enteric tablet.

Results: The polymer content of 0.5 % was considered as too low to obtain spherical beads in the dried form. Raman spectra confirmed that NPX did not undergo structural changes during production process. DSC studies showed that thermal decomposition at lower temperatures was observed for formulations with the lowest amount of GG. It turned out that the most important factor which determined the morphology of the beads was the amount of gellan gum in the initial mixture. The beads revealed 13.9- 39.9% of drug loading and 75.3-99.7% drug encapsulation efficiency. Swelling of the beads was pHdependent as the beads remained stable in the acidic environment but started to absorb water. In pH=7.4 after 3 hours, the beginning of the physical decomposition of the polymer matrix was observed. The drug release studies showed that in pH=7.4 the commercial tablets released 90% of the drug after 45 minutes while the amount of NPX released from pellets after the same time was 40-80%.

Conclusion: In general, it can be stated that gellan macro beads may be regarded as suitable for site specific delivery of NPX to the colon. However, these simple to obtain beads can be potentially used as carriers for many different drugs whenever it is necessary to omit the stomach.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Keywords: Beads; drug release; gellan gum; ionotropic gelation; naproxen; swelling

Document Type: Research Article

Publication date: January 1, 2018

This article was made available online on April 26, 2017 as a Fast Track article with title: "pH-Dependent Behavior of Novel Gellan Beads Loaded with Naproxen".

More about this publication?
  • The aim of Current Drug Delivery is to publish peer-reviewed articles, short communications, short and in-depth reviews in the rapidly developing field of drug delivery. Modern drug research aims to build in delivery properties of a drug at the design phase, however in many cases this ideal cannot be met and the development of delivery systems becomes as important as the development as the drugs themselves.

    The journal aims to cover the latest outstanding developments in drug and vaccine delivery employing physical, physico-chemical and chemical methods. The drugs include a wide range of bioactive compounds from simple pharmaceuticals to peptides, proteins, nucleotides, nucleosides and sugars. The journal will also report progress in the fields of transport routes and mechanisms including efflux proteins and multi-drug resistance.

    The journal is essential for all pharmaceutical scientists involved in drug design, development and delivery.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more