Skip to main content
padlock icon - secure page this page is secure

Development of Itraconazole Liquisolid Compact: Effect of Polyvinylpyrrolidone on the Dissolution Properties

Buy Article:

$68.00 + tax (Refund Policy)

The aim of this work was to utilize the liquisolid technique to enhance dissolution of itraconazole (ITZ). Liquisolid tablets of ITZ were formulated by using N-methyl-2-pyrrolidone as liquid vehicle, polyvinylpyrrolidone (PVP) as a precipitation inhibitor and magnesium aluminometasilicate Neusilin┬« as a carrier and coating material. The effect of PVP level on stability of liquid medication, physicomechnanical properties and dissolution rate of liquisolid compacts was studied in detail. The crystallinity of formulated drug and the interaction between excipients were examined by differential scanning calorimetry (DSC) and X-ray powder diffraction (XRPD). All the liquisolid tablets showed higher drug dissolution rates than the conventional, directly compressed tablets. The flowability of liquisolid powders was slightly improved as the proportion of PVP in ITZ-NMP mixture increased. Moreover, the stability of liquid medication and wetting ability of liquisolid tablets were improved by PVP. The presence of low amount of PVP (≤ 1%) in liquisolid formulation could enhance dissolution of ITZ liquisolid tablets, whereas the percentage of PVP over 5% decreased the dissolution of ITZ from liquisolid tablets. Both DSC and XRPD suggested reduction or loss of ITZ crystallinity upon liquisolid formulations indicating that the drug was almost solubilized and molecularly dispersed with excipients within the liquisolid matrix. It could be shown that increased solubility, wetting properties and surface area available for dissolution contributed to the improvement of the dissolution of ITZ from liquisolid tablets.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Keywords: Dissolution; N-methyl-2-pyrrolidone; PVP; itraconazole; liquisolid compact

Document Type: Research Article

Publication date: May 1, 2016

More about this publication?
  • The aim of Current Drug Delivery is to publish peer-reviewed articles, short communications, short and in-depth reviews in the rapidly developing field of drug delivery. Modern drug research aims to build in delivery properties of a drug at the design phase, however in many cases this ideal cannot be met and the development of delivery systems becomes as important as the development as the drugs themselves.

    The journal aims to cover the latest outstanding developments in drug and vaccine delivery employing physical, physico-chemical and chemical methods. The drugs include a wide range of bioactive compounds from simple pharmaceuticals to peptides, proteins, nucleotides, nucleosides and sugars. The journal will also report progress in the fields of transport routes and mechanisms including efflux proteins and multi-drug resistance.

    The journal is essential for all pharmaceutical scientists involved in drug design, development and delivery.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more