Skip to main content

Development and Optimization of Solid Self Nanoemulsifying Drug Delivery (S-SNEDDS) Using D-Optimal Design for Improvement of Oral Bioavailability of Amiodarone Hydrochloride

Buy Article:

$68.00 + tax (Refund Policy)

The solid-self nanoemulsifying drug delivery system (S-SNEDDS) of Amiodarone hydrochloride (AH) was prepared and evaluated. AH exhibits poor aqueous solubility (0.3-0.5 mg/ml) and therefore variable oral bioavailability. Capmul MCM, Cremophor RH-40 and Propylene glycol were identified as oil, surfactant and co-surfactant for preparing L-SNEDDS. D-optimal design was used to optimize the amount of components in liquid self nanoemulsifying drug delivery system (L-SNEDDS). Optimized AH-L-SNEDDS having 15.8 nm globule size and 99.5 %transmittance was then adsorbed on Neusilin US2 to form solid self nanoemulsifying drug delivery system (AH-SSNEDDS). AH loaded L-SNEDDS and S-SNEDDS were characterized for various physicochemical properties and solid state properties. In vitro dissolution, ex vivo drug release study and In vivo study were performed for pure AH, AH-LSNEDDS and AH-S-SNEDDS. Both AH loaded L-SNEDDS and S-SNEDDS showed more than 95% drug release in 20 min during drug release studies. In vivo study revealed that release of AH from S-SNEDDS was 2.26 times and LSNEDDS was 1.83 times higher than that from suspension when given to rabbits (p < 0.01). The optimized S-SNEDDS was found to be stable and its shelf life was found to be 2.2 years. S-SNEDDS could serve as a potential drug delivery system for AH.

Keywords: Amiodarone hydrochloride; Bioavailability; L-SNEDDS; S-SNEDDS

Document Type: Research Article

Publication date: 01 December 2015

More about this publication?
  • The aim of Current Drug Delivery is to publish peer-reviewed articles, short communications, short and in-depth reviews in the rapidly developing field of drug delivery. Modern drug research aims to build in delivery properties of a drug at the design phase, however in many cases this ideal cannot be met and the development of delivery systems becomes as important as the development as the drugs themselves.

    The journal aims to cover the latest outstanding developments in drug and vaccine delivery employing physical, physico-chemical and chemical methods. The drugs include a wide range of bioactive compounds from simple pharmaceuticals to peptides, proteins, nucleotides, nucleosides and sugars. The journal will also report progress in the fields of transport routes and mechanisms including efflux proteins and multi-drug resistance.

    The journal is essential for all pharmaceutical scientists involved in drug design, development and delivery.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content