Skip to main content
padlock icon - secure page this page is secure

Self-Emulsifying Lipid Formulation: An Overview

Buy Article:

$68.00 + tax (Refund Policy)

An important step in oral drug development is to identify drug candidates that show sufficient aqueous solubility and could resist or bypass first-pass metabolism in order to overcome bioavailability problems. Aqueous solubility is characteristically low for Biopharmaceutical Classification System (BCS) class II and class IV drug candidates. Several formulation approaches are being identified to overcome the low solubility aspect of a drug candidate such as particle size manipulation, solid dispersions, inclusion complexes and several of nanoparticle-based options. However, the formulation for drug candidates that in addition to low aqueous solubility shows high intestinal and first-pass metabolism is challenging. The self-emulsifying lipid formulations (SELF) provide a mean for sidestepping these factors and improve the bioavailability of lipophilic and highly first- pass metabolised drugs. Nevertheless, formulation of a successful SELF requires an exhaustive understanding of the component used to formulate them, the behaviour of the formulation within the gastrointestinal (GI) milieu and the mechanism by which the drug is released and absorbed. This review gives a brief description of the formulation aspects of SELF and their potential role to mitigate the bioavailability problem related to lipophilic and highly first- pass metabolised drugs.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Keywords: BCS; SELF; lipidic excipients; lymphatic absorption; precipitation; supersaturation

Document Type: Research Article

Publication date: April 1, 2015

More about this publication?
  • The aim of Current Drug Delivery is to publish peer-reviewed articles, short communications, short and in-depth reviews in the rapidly developing field of drug delivery. Modern drug research aims to build in delivery properties of a drug at the design phase, however in many cases this ideal cannot be met and the development of delivery systems becomes as important as the development as the drugs themselves.

    The journal aims to cover the latest outstanding developments in drug and vaccine delivery employing physical, physico-chemical and chemical methods. The drugs include a wide range of bioactive compounds from simple pharmaceuticals to peptides, proteins, nucleotides, nucleosides and sugars. The journal will also report progress in the fields of transport routes and mechanisms including efflux proteins and multi-drug resistance.

    The journal is essential for all pharmaceutical scientists involved in drug design, development and delivery.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more