Skip to main content

High Resolution Particle Characterization to Expedite Development and Regulatory Acceptance of Nanomedicines

Buy Article:

$68.00 + tax (Refund Policy)

The pharmaceutical industry as well as European and US governing agencies have indicated the need for more accurate, high resolution, characterization of complex drug materials, nanomedicines, to facilitate their development and eventual approval. In particular, accurately measuring the size, zeta-potential, and concentration of nanomedicines is desired. Herein we demonstrate the comprehensive and high resolution analysis capabilities of tunable resistive pulse sensing (TRPS) on the most widely approved nanomedicines to-date, liposomal particles. The number-based size distribution, concentration and volume fraction of liposomes formed by extrusion through a 100 nm or 200 nm Nucleopore filter membrane are shown as well as how freeze-thaw aggregation changes individual liposomes and the overall size distribution. In addition, the simultaneous size and zeta-potential analysis capabilities of TRPS is used to characterize the homogeneity and difference between liposomes made with and without the addition of PEGylated phospholipids.

Keywords: Coulter counter; TRPS; particle characterization; pore sensor; qNano

Document Type: Research Article

Publication date: 01 February 2015

More about this publication?
  • The aim of Current Drug Delivery is to publish peer-reviewed articles, short communications, short and in-depth reviews in the rapidly developing field of drug delivery. Modern drug research aims to build in delivery properties of a drug at the design phase, however in many cases this ideal cannot be met and the development of delivery systems becomes as important as the development as the drugs themselves.

    The journal aims to cover the latest outstanding developments in drug and vaccine delivery employing physical, physico-chemical and chemical methods. The drugs include a wide range of bioactive compounds from simple pharmaceuticals to peptides, proteins, nucleotides, nucleosides and sugars. The journal will also report progress in the fields of transport routes and mechanisms including efflux proteins and multi-drug resistance.

    The journal is essential for all pharmaceutical scientists involved in drug design, development and delivery.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content