Skip to main content

Beta3-Adrenoreceptors in Cardiovasular Diseases: New Roles for an “Old” Receptor

Buy Article:

$68.00 + tax (Refund Policy)

Beta3-adrenoreceptors (B3AR) are traditionally known as metabolic receptors in adipose tissue, but came into focus in the cardiovascular field after our demonstration of their expression in human cardiac myocytes and endothelial cells, where they mediate endothelium-dependent relaxation of coronary resistance vessels through production of both nitric oxide and endothelium-dependent hyperpolarization factor(s) (EDHF). B3AR are also expressed at the plasma membrane of rodent and human cardiac myocytes. Notably, their expression is increased in several forms of human cardiomyopathies, which raises questions about their adaptive or maladaptive role in myocardial remodelling. To test the hypothesis that they may counteract the adverse effect of B1-B2-AR overactivation, we set out to study the cardiac phenotype of transgenic mice expressing human recombinant B3AR under the cardiac-specific alpha-MHC promoter. While exhibiting no apparent phenotype at basal state, these mice seem protected from hypertrophic remodeling under a variety of stresses, without developing left ventricular dysfunction. Notably, this protection seems to depend on a functional nitric oxide synthase (NOS), as it is abrogated under NOS inhibition. These features can all be recapitulated in homotypic cardiac myocytes cultures in vitro. B3AR transgenic mice may also be protected from fibrosis through a paracrine cross-talk to cardiac fibroblasts. These data suggest a beneficial role of B3AR in myocardial remodeling through attenuation of fibrosis and of excessive cardiac myocyte hypertrophy, while at the same time optimizing perfusion. As B3AR are resistant to homologous desensitization, they are attractive targets for therapeutic interventions in the setting of chronic sympathetic stimulation, as it is prevalent in heart failure and several cardiomyopathies.

Keywords: Beta3-adrenergic receptor; Catecholamines; Heart Failure; Human; Hypertrophy; Myocardial remodeling; Nitric Oxide

Document Type: Research Article

Publication date: 01 February 2013

More about this publication?
  • The aim of Current Drug Delivery is to publish peer-reviewed articles, short communications, short and in-depth reviews in the rapidly developing field of drug delivery. Modern drug research aims to build in delivery properties of a drug at the design phase, however in many cases this ideal cannot be met and the development of delivery systems becomes as important as the development as the drugs themselves.

    The journal aims to cover the latest outstanding developments in drug and vaccine delivery employing physical, physico-chemical and chemical methods. The drugs include a wide range of bioactive compounds from simple pharmaceuticals to peptides, proteins, nucleotides, nucleosides and sugars. The journal will also report progress in the fields of transport routes and mechanisms including efflux proteins and multi-drug resistance.

    The journal is essential for all pharmaceutical scientists involved in drug design, development and delivery.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content