Skip to main content
padlock icon - secure page this page is secure

Evidence for Extensive Non-Endocytotic Translocation of Peptide Nucleic Acids Across Mammalian Plasma Membranes

Buy Article:

$68.00 + tax (Refund Policy)

The ability of peptide nucleic acids (PNA) to enter and to cross filter-grown MDCK, HEK and CHO cells was studied by means of a protocol based on capillary electrophoresis combined with laser-induced fluorescence detection. The used approach avoided possible errors encountered in protocols based on confocal laserscanning microscopy and FACS analysis. In contradiction to the commonly anticipated unability of PNA to cross biomembranes, extensive translocation of unmodified PNA into and across the investigated cell types was found. The transport mode comprised a variety of energy dependent and -independent as well as temperature sensitive mechanisms being probably destined to natural substrates and hijacked by PNA. The presented results suggest active as well as passive export mechanisms rather than poor penetration into cells to be responsible for the only weak biological activity of unmodified PNA.

No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Keywords: Peptide nucleic acids; cell-type dependent transport; cellular uptake; delivery across biomembranes; direction dependent transport; energy dependent and -independent transport; membrane permeability; transcytosis; transwell approach

Document Type: Research Article

Publication date: September 1, 2011

More about this publication?
  • The aim of Current Drug Delivery is to publish peer-reviewed articles, short communications, short and in-depth reviews in the rapidly developing field of drug delivery. Modern drug research aims to build in delivery properties of a drug at the design phase, however in many cases this ideal cannot be met and the development of delivery systems becomes as important as the development as the drugs themselves.

    The journal aims to cover the latest outstanding developments in drug and vaccine delivery employing physical, physico-chemical and chemical methods. The drugs include a wide range of bioactive compounds from simple pharmaceuticals to peptides, proteins, nucleotides, nucleosides and sugars. The journal will also report progress in the fields of transport routes and mechanisms including efflux proteins and multi-drug resistance.

    The journal is essential for all pharmaceutical scientists involved in drug design, development and delivery.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more