Skip to main content
padlock icon - secure page this page is secure

Asymmetric Membrane Capsules of Phenylephrine Hydrochloride: An Osmotically Controlled Drug Delivery System

Buy Article:

$68.00 + tax (Refund Policy)

The aim of the current study was to develop osmotically controlled release system of freely water soluble drug phenylephrine hydrochloride by use of asymmetric membrane capsules to reduce the dosing frequency and consequently improve the patient compliance. Ethyl cellulose asymmetric membrane capsules were developed by phase inversion process and solubility modulation was accomplished by common ion effect wherein sodium chloride was included in the formulation that also served as an osmogen. The effect of formulation variables namely level of polymer (ethyl cellulose), level of pore former (glycerol) and level of osmogen (sodium chloride) on the in vitro release of the drug was evaluated by 23 factorial design. Effects of environmental factors on the release rate of the drug from asymmetric membrane capsules were also evaluated. Membrane characterization by scanning electron microscopy showed an outer dense region with less pores and inner porous region for the prepared asymmetric membrane. The dimensional analysis of asymmetric membrane capsule documented the capsules to be of uniform cap and body size comparable to commercial hard gelatin capsules. In vitro release studies results showed that incorporation of higher amount of osmogen not only increased the osmotic pressure but also controlled the drug release for a period of 12 hr. The drug release was inversely proportional to the level of polymer in asymmetric membrane capsule but directly related to the level of pore former in the membrane. The optimized asymmetric membrane capsule (F5) was able to provide zero order release of phenylephrine hydrochloride independent of agitation rate, intentional defect in the membrane and pH of dissolution medium but was dependent on the osmotic pressure gradient between inside and outside of the delivery system.





No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Keywords: Asymmetric membrane capsule; controlled drug delivery; extra design chek point method; highly water soluble drug; invitro drug delivery of phenylephrine hydrochloride; osmogens; osmotically regulated system; phase inverted capsule; solubility modulation; statistical analysis of asymmetric membrane

Document Type: Research Article

Publication date: September 1, 2011

More about this publication?
  • The aim of Current Drug Delivery is to publish peer-reviewed articles, short communications, short and in-depth reviews in the rapidly developing field of drug delivery. Modern drug research aims to build in delivery properties of a drug at the design phase, however in many cases this ideal cannot be met and the development of delivery systems becomes as important as the development as the drugs themselves.

    The journal aims to cover the latest outstanding developments in drug and vaccine delivery employing physical, physico-chemical and chemical methods. The drugs include a wide range of bioactive compounds from simple pharmaceuticals to peptides, proteins, nucleotides, nucleosides and sugars. The journal will also report progress in the fields of transport routes and mechanisms including efflux proteins and multi-drug resistance.

    The journal is essential for all pharmaceutical scientists involved in drug design, development and delivery.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more