Skip to main content
padlock icon - secure page this page is secure

Multifunctional Nanomedicine Platform for Cancer Specific Delivery of siRNA by Superparamagnetic Iron Oxide Nanoparticles-Dendrimer Complexes

Buy Article:

$68.00 + tax (Refund Policy)

The ability of Superparamagnetic Iron Oxide (SPIO) nanoparticles and Poly(Propyleneimine) generation 5 dendrimers (PPI G5) to cooperatively provoke siRNA complexation was investigated in order to develop a targeted, multifunctional siRNA delivery system for cancer therapy. Poly(ethylene glycol) (PEG) coating and cancer specific targeting moiety (LHRH peptide) have been incorporated into SPIO-PPI G5-siRNA complexes to enhance serum stability and selective internalization by cancer cells. Such a modification of siRNA nanoparticles enhanced its internalization into cancer cells and increased the efficiency of targeted gene suppression in vitro. Moreover, the developed siRNA delivery system was capable of sufficiently enhancing in vivo antitumor activity of an anticancer drug (Cisplatin). The proposed approach demonstrates potential for the creation of targeted multifunctional nanomedicine platforms with the ability to deliver therapeutic siRNA specifically to cancer cells in order to prevent severe adverse side effects on healthy tissues and in situ monitoring of the therapeutic outcome using clinically relevant imaging techniques.





No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Keywords: 1-octadecene; 2,4,6-Trinitrobenzenesulphonic Acid; Atomic Force Microscope; Bicinchoninic Acid; Cisplatin; Dynamic Light Scattering; LHRH peptide; Magnetic Resonance Imaging; PPI dendrimer; Polypropyleneimine Generation 5; SPIO nanoparticles; Sodium Dodecyl Sulfate; Superparamagnetic Iron Oxide; amphiphilic polymers; imaging; luciferase; reverse transcription-polymerase chain reaction; siRNA; tumor targeting

Document Type: Research Article

Publication date: January 1, 2011

More about this publication?
  • The aim of Current Drug Delivery is to publish peer-reviewed articles, short communications, short and in-depth reviews in the rapidly developing field of drug delivery. Modern drug research aims to build in delivery properties of a drug at the design phase, however in many cases this ideal cannot be met and the development of delivery systems becomes as important as the development as the drugs themselves.

    The journal aims to cover the latest outstanding developments in drug and vaccine delivery employing physical, physico-chemical and chemical methods. The drugs include a wide range of bioactive compounds from simple pharmaceuticals to peptides, proteins, nucleotides, nucleosides and sugars. The journal will also report progress in the fields of transport routes and mechanisms including efflux proteins and multi-drug resistance.

    The journal is essential for all pharmaceutical scientists involved in drug design, development and delivery.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more