Skip to main content

Convection Enhanced Drug Delivery of Novel Therapeutic Agents to Malignant Brain Tumors

Buy Article:

$68.00 + tax (Refund Policy)

In spite of conventional treatment modalities which include surgery, chemotherapy, and radiotherapy, the survival rates for patients with malignant gliomas remain disappointing. Successful treatment has been limited by difficulties in delivering therapeutic agents to the central nervous system (CNS). Specifically, drug penetration of the blood brain barrier (BBB) poses a unique and challenging problem in glioma therapy. Recently, however, promising techniques have emerged to circumvent this problem. One such advancement is convection-enhanced delivery (CED). This method was originally introduced and refined in the early 1990s by researchers at the National Institute of Health (NIH) and involves drug infusion under high pressure using intracranial catheters. CED allows for delivery of high concentrations of therapeutic agents directly into brain tumors and surrounding parenchyma. This method eludes the BBB and allows the use of regional drug therapy, while at the same time limiting systemic toxicity. In the present article, we review both the preclinical and clinical studies concerning CED. We also discuss future directions and the potential impact of this modality on the treatment of malignant gliomas.





Keywords: Brain tumor; Cotara; IL13-PE38; IL4-PE; TransMID; convection-enhanced delivery; malignant glioma

Document Type: Research Article

Affiliations: University of Chicago, Section of Neurosurgery, 5841 S. Maryland Ave, MC 3026, Chicago, Illinois 60637.

Publication date: 01 April 2007

More about this publication?
  • The aim of Current Drug Delivery is to publish peer-reviewed articles, short communications, short and in-depth reviews in the rapidly developing field of drug delivery. Modern drug research aims to build in delivery properties of a drug at the design phase, however in many cases this ideal cannot be met and the development of delivery systems becomes as important as the development as the drugs themselves.

    The journal aims to cover the latest outstanding developments in drug and vaccine delivery employing physical, physico-chemical and chemical methods. The drugs include a wide range of bioactive compounds from simple pharmaceuticals to peptides, proteins, nucleotides, nucleosides and sugars. The journal will also report progress in the fields of transport routes and mechanisms including efflux proteins and multi-drug resistance.

    The journal is essential for all pharmaceutical scientists involved in drug design, development and delivery.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content