Skip to main content

The Role of EGFR-Met Interactions in the Pathogenesis of Glioblastoma and Resistance to Treatment

Buy Article:

$68.00 + tax (Refund Policy)

Glioblastoma (GBM) is the most common primary malignant brain tumor in adults. It is a devastating and intractable disease with a poor outcome. Aberrant receptor tyrosine kinase signaling is a key driver in gliomagenesis and resistance to treatment. EGFR gene amplification and mutations are an important genetic alteration in GBM resulting in increased expression of EGFR wild type (EGFRwt) as well as mutant oncogenic forms of the EGFR. EGFRvIII is the most common oncogenic mutant in GBM and is usually co-expressed with EGFRwt. EGFRvIII does not bind ligand and is constitutively active. Recent studies have also highlighted a key role for Met in gliomagenesis and the EGFR and Met may act in concert to promote the malignant phenotype. Met is transactivated by EGFRvIII and plays a key role in EGFRvIII-mediated resistance to targeted treatment. HGF, a Met ligand, is highly expressed in GBM. HGF and Met create an important autocrine signaling loop that promotes GBM invasion. In addition, HGF/Met is able to induce EGFR activation, leading to enhanced activation of oncogenic signaling in GBM. In this review, we discuss the evidence for EGFR and Met interaction in GBM and discuss the mechanisms and biological consequences of transactivation between the two kinases. Additionally, we discuss the therapeutic potential of targeting both EGFR and Met signaling for the treatment of GBM.

Keywords: EGFR; EGFR mutants; EGFRvIII; GBM; Met; antagonistic. EGFR wild type; glioblastoma; glioma; synergistic; targeted treatment

Document Type: Research Article

Publication date: 01 March 2017

More about this publication?
  • Current Cancer Drug Targets aims to cover all the latest and outstanding developments on the medicinal chemistry, pharmacology, molecular biology, genomics and biochemistry of contemporary molecular drug targets involved in cancer, e.g. disease specific proteins, receptors, enzymes, genes.
    Each issue of the journal contains a series of timely in-depth reviews written by leaders in the field covering a range of current topics on drug targets involved in cancer.
    As the discovery, identification, characterization and validation of novel human drug targets for anti-cancer drug discovery continues to grow; this journal has become essential reading for all pharmaceutical scientists involved in drug discovery and development.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content