Skip to main content
padlock icon - secure page this page is secure

Cold-Adapted Esterases and Lipases: A Biodiversity Still Under-Exploited

Buy Article:

$68.00 + tax (Refund Policy)

Micro-organisms that thrive at low temperatures produce cold-adapted enzymes which generally display high catalytic efficiency making these biocatalysts particularly interesting either for investigating stability/flexibility relationships, or for their quite wide applications.

Psychrophilic lipases and esterases have attracted attention because of their increasing use in the organic synthesis of chiral intermediates due to their low optimum temperature and high activity in cold conditions, which are favourable properties for the production of relatively frail compounds. In addition, these enzymes have an advantage under low water conditions due to their inherent greater flexibility, wherein the activity of mesophilic and thermophilic enzymes is severely impaired by an excess of rigidity.

In this review we present an up to date overview on some psychrophilic esterases and lipases from microbial sources. The different experimental strategies available for the search of psychrophilic biocatalysts and their application to discover novel cold-adapted lipolytic enzymes will be outlined. Some structural features that justify the unusually high enzymatic activity at low temperature will be discussed, in view of the recent achievements concerning the use of cold-adapted lipases and esterases in the synthesis of fine chemicals.

No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Keywords: Psychrophilic micro-organisms; cold-active enzymes; ester synthesis; α/β hydrolase fold

Document Type: Research Article

Publication date: January 1, 2010

More about this publication?
  • Current Chemical Biology aims to publish full-length and mini reviews on exciting new developments at the chemistry-biology interface, covering topics relating to Chemical Synthesis, Science at Chemistry-Biology Interface and Chemical Mechanisms of Biological Systems.

    Current Chemical Biology covers the following areas: Chemical Synthesis (Syntheses of biologically important macromolecules including proteins, polypeptides, oligonucleotides, oligosaccharides etc.; Asymmetric synthesis; Combinatorial synthesis; Diversity-oriented synthesis; Template-directed synthesis; Biomimetic synthesis; Solid phase biomolecular synthesis; Synthesis of small biomolecules: amino acids, peptides, lipids, carbohydrates and nucleosides; and Natural product synthesis).

    Science at Chemistry-Biology Interface (Chemical informatics; Macromolecular catalysts and receptors; Enzymatic synthesis; Biosynthetic engineering; Combinatorial biosynthesis; Plant cell based chemistry; Bacterial and viral cell based chemistry; Chemistry of cellular processes in plants/animals; Receptor chemistry; Cell signaling chemistry; Drug design through understanding of disease processes; Synthetic biology; New high throughput screening techniques; Small molecular array fabrication; Chemical genomics; Chemical and biological approaches to carbohydrates proteins and nucleic acids design; Chemical and biological regulation of biosynthetic pathways; and Unnatural biomolecular analogs).
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more