Skip to main content

Aspergillus Biotechnology: An Overview on the Production of Hydrolases and Secondary Metabolites

Buy Article:

$68.00 + tax (Refund Policy)

Background: Microorganisms such as filamentous fungi are important sources of enzymes and secondary metabolites with wide application in biotechnological processes conducted in different industrial areas. Aspergillus, one of the most important genera of filamentous fungi for this purpose, has been used as a model to understand different biological processes. Despite the existence of some pathogenic Aspergillus strains, many others have been explored from a biotechnological perspective. Characteristics such as the presence of a secretory pathway, the possibility of genetic manipulation, and high productivity using different fermentative processes are advantageous and favorable for the use of Aspergillus spp. for different purposes. Production of both hydrolases and secondary metabolites has been reported for different Aspergillus species.

Objective: This review describes the production, importance, and application of the main hydrolases (amylases, cellulases, fructofuranosidases, xylanases, proteases, tannases, and phytases) produced by Aspergillus spp. considering their importance in the global enzyme market. The production of secondary metabolites such as bioactive peptides and pigments is also presented.

Conclusion: Different Aspergillus strains have demonstrated biotechnological potential for the production of hydrolases and secondary metabolites for application in food and feed, beverage, pharmaceutical, pulp, and bioremediation industries among others. In the future new species should be described and their biotechnological potential evaluated.

Keywords: Aspergillus; fungal biotechnology; fungal enzymes; fungal pigments; hydrolases; secondary metabolites

Document Type: Research Article

Publication date: 01 November 2017

More about this publication?
  • Current Biotechnology is an international peer-reviewed journal, which publishes expert research, reviews and thematic issues in all core areas of biotechnology including basic and applied research. Topics covered include, molecular engineering of nucleic acids and proteins; genomics and bioinformatics, molecular therapy; imaging technology and large scale biology; medical biotechnology, regenerative medicine, industrial biotechnology, biochemical engineering/bioprocess engineering, nano-biotechnology, bio-nanotechnology, analytical biotechnology; food and agricultural biotechnology; environmental biotechnology.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content