Skip to main content
padlock icon - secure page this page is secure

Preparation, Characterization and In vitro Biological Activity of Soyasapogenol B Loaded onto Functionalized Multi-walled Carbon Nanotubes

Buy Article:

$68.00 + tax (Refund Policy)

Background: Using Multi-Walled Carbon Nanotubes (MWCNTs) as a drug delivery system, can avoid the need for solvents and preventing drug precipitation in aqueous solution. Soyasapogenol B (SSB) acts as an important therapeutic agent owing to its numerous reported biological activities. Hence, this work deals with preparation and characterization of SBB loaded onto functionalized MWCNTs with tetraethyl orthosilicate (TEOS) and/or chitosan.

Method: SSB was immobilized onto functionalized MWCNTs using miniemulsion technique. Moreover, niosomes were utilized to encapsulate the prepared systems. The formulations were analyzed by Fourier Transform Infrared Spectroscopy (FTIR), Transmission Electron Microscope (TEM) and particle size distribution analysis. In vitro release profiles of loaded SSB particles were carried out and kinetics of release were also studied. In vitro cytotoxicity of the prepared materials was examined and evaluated by SRB assay using different human cell lines such as normal melanocytes (HFB4), and carcinoma breast and liver (MCF7 and HepG2, respectively) in comparison with the standard doxorubicin.

Results: SSB loaded materials exhibited successful encapsulation in niosomes, resulting in sustainable in drug release. Study of kinetics of release revealed presence of several complex factors affecting SSB release. Mathematical processing of the in vitro release data showed that the release of SSB from niosomal formulations obeyed more than one model. The second order and Higuchi's models were the most fitting models in case of presence of chitosan or TEOS, respectively. While, all formulations exhibited low cytotoxic properties on all tested cell lines.

Conclusion: FTIR, particle size and TEM analysis confirmed that SSB was successfully loaded onto functionalized MWCNTs. Moreover, the different niosome formulations based on functionalized MWCNTs were prepared with sustainable SSB release in. The cytotoxicity could be minimized in case of chitosan and TEOS functionalization.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Keywords: Multi-walled carbon nanotubes; TEOS; chitosan; in vitro cytotoxicity; in vitro release kinetics; soyasapogenol B

Document Type: Research Article

Publication date: December 1, 2018

More about this publication?
  • The journal aims to provide updates to researchers about new bioactive compounds with proven activities in various biological screenings and pharmacological models. The journal will contain information about the structures, biological activities and sources of chemical entities discovered or designed by researchers and published in leading journals. The aim is to provide a valuable information source of bioactive compounds synthesized or isolated, which can be used for further development of pharmaceuticals by industry and academia.

    The journal should prove to be essential reading for pharmacologists, pharmaceutical chemists and medicinal chemists who wish to be kept informed and up-to-date with the latest and most important developments about new bioactive compounds of natural or synthetic origin, including recent patents.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more