AVN-322 is a Safe Orally Bio-Available Potent and Highly Selective Antagonist of 5-HT6R with Demonstrated Ability to Improve Impaired Memory in Animal Models
Background: In recent years, 5-hydroxytryptamine subtype 6 receptor (5-HT6 receptor, 5- HT6R) has emerged as a promising therapeutic target for the treatment of neuropathological disorders, including Alzheimer’s disease (AD) and schizophrenia. 5-HT6 receptors were hypothesized
to be implicated in the processes of learning, memory, and cognition with 5-HT6R antagonists being effective in animal models of cognition and memory impairment. Several selective 5-HT6R ligands are currently undergoing clinical trials for treatment of AD.
Methods: We describe results of preclinical development of a novel and highly selective and potent 5- HT6R antagonist, AVN-322, as a clinical candidate for the treatment of AD to improve concurrent debilitation of memory and cognition in the AD patients, and schizophrenia as a substance with antipsychotic effect. In the manuscript, we present its in vitro and vivo efficacy, ADME, pharmacokinetics in animals and in humans, and toxicity.
Results: While having high binding affinity in medium picomolar range, the lead compound demonstrates substantially better selectivity index then the reference drug candidates currently being tested in clinical studies. AVN-322 showed high oral bioavailability and favorable blood-brain barrier (BBB) penetration. In vivo testing revealed its clear cognition enhancing effect. AVN-322 significantly restored both scopolamine- and MK-801-induced cognitive dysfunction and demonstrated antipsychotic potential.
Conclusion: Taking into account its good safety profile and favorable pharmacokinetics, AVN-322 can be reasonably considered as a novel drug candidate for the treatment of neurological disorders such as AD and/or schizophrenia.
Methods: We describe results of preclinical development of a novel and highly selective and potent 5- HT6R antagonist, AVN-322, as a clinical candidate for the treatment of AD to improve concurrent debilitation of memory and cognition in the AD patients, and schizophrenia as a substance with antipsychotic effect. In the manuscript, we present its in vitro and vivo efficacy, ADME, pharmacokinetics in animals and in humans, and toxicity.
Results: While having high binding affinity in medium picomolar range, the lead compound demonstrates substantially better selectivity index then the reference drug candidates currently being tested in clinical studies. AVN-322 showed high oral bioavailability and favorable blood-brain barrier (BBB) penetration. In vivo testing revealed its clear cognition enhancing effect. AVN-322 significantly restored both scopolamine- and MK-801-induced cognitive dysfunction and demonstrated antipsychotic potential.
Conclusion: Taking into account its good safety profile and favorable pharmacokinetics, AVN-322 can be reasonably considered as a novel drug candidate for the treatment of neurological disorders such as AD and/or schizophrenia.
Keywords: 5-HT6 antagonist; Alzheimer's; CNS diseases; cognition; memory
Document Type: Research Article
Publication date: March 1, 2017
- Current Alzheimer Research publishes peer-reviewed frontier review and research articles on all areas of Alzheimer's disease. This multidisciplinary journal will help in understanding the neurobiology, genetics, pathogenesis, and treatment strategies of Alzheimer's disease. The journal publishes objective reviews written by experts and leaders actively engaged in research using cellular, molecular, and animal models. The journal also covers original articles on recent research in fast emerging areas of molecular diagnostics, brain imaging, drug development and discovery, and clinical aspects of Alzheimer's disease. Manuscripts are encouraged that relate to the synergistic mechanism of Alzheimer's disease with other dementia and neurodegenerative disorders. Book reviews, meeting reports and letters-to-the-editor are also published. The journal is essential reading for researchers, educators and physicians with interest in age-related dementia and Alzheimer's disease. Current Alzheimer Research provides a comprehensive 'bird's-eye view' of the current state of Alzheimer's research for neuroscientists, clinicians, health science planners, granting, caregivers and families of this devastating disease.
- Editorial Board
- Information for Authors
- Subscribe to this Title
- Call for Papers
- Ingenta Connect is not responsible for the content or availability of external websites
- Access Key
- Free content
- Partial Free content
- New content
- Open access content
- Partial Open access content
- Subscribed content
- Partial Subscribed content
- Free trial content