Skip to main content
padlock icon - secure page this page is secure

Molecular Docking Analysis of Caspase-3 Activators as Potential Anticancer Agents

Buy Article:

$68.00 + tax (Refund Policy)

Introduction: Caspase-3 plays a leading role in apoptosis and on activation, it cleaves many protein substrates in cells and causes cell death. Since many chemotherapeutics are known to induce apoptosis in cancer cells, promotion or activation of apoptosis via targeting apoptosis regulators has been suggested as a promising strategy for anticancer drug discovery. In this paper, we studied the interaction of 1,2,4-Oxadiazoles derivatives with anticancer drug target enzymes (PDB ID 3SRC).

Methods: Molecular docking studies were performed on a series of 1,2,4-Oxadiazoles derivatives to find out molecular arrangement and spatial requirements for their binding potential for caspase-3 enzyme agonistic affinity to treat cancer. The Autodock 4.2 and GOLD 5.2 molecular modeling suites were used for the molecular docking analysis to provide information regarding important drug receptor interaction.

Results and Conclusion: Both suites explained the spatial disposition of the drug with the active amino acid in the ligand binding domain of the enzyme. The amino acid asparagine 273 (ASN 273) of target has shown hydrogen bond interaction with the top ranked ligand.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Keywords: Autodock 4.2; Molecular docking; anti-cancer; asparagine; binding affinity; caspase

Document Type: Research Article

Publication date: February 1, 2019

More about this publication?
  • Current Computer-Aided Drug Design aims to publish all the latest developments in drug design based on computational techniques. The field of computer-aided drug design has had extensive impact in the area of drug design. Current Computer-Aided Drug Design is an essential journal for all medicinal chemists who wish to be kept informed and up-to-date with all the latest and important developments in computer-aided methodologies and their applications in drug discovery. Each issue contains a series of timely, in-depth reviews written by leaders in the field, covering a range of computational techniques for drug design, screening, ADME studies, etc., providing excellent rationales for drug development.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more