Skip to main content
padlock icon - secure page this page is secure

Open Access An Integrated Computational Approach for Plant-Based Protein Tyrosine Phosphatase Non-Receptor Type 1 Inhibitors

Download Article:
 Download
(PDF 3,605.5 kb)
 
Background: Protein tyrosine phosphatase non-receptor type 1 is a therapeutic target for the type 2 diabetes mellitus. According to the International Diabetes Federation 2015 report, one out of 11 adults suffers from diabetes mellitus globally.

Objective: Current anti-diabetic drugs can cause life-threatening side-effects. The present study proposes a pipeline for the development of effective and plant-derived anti-diabetic drugs that may be safer and better tolerated.

Methods: Plant-derived protein tyrosine phosphatase non-receptor type 1 inhibitors possessing antidiabetic activity less than 10μM were used as a training set. A common feature pharmacophore model was generated. Pharmacophore-based screening of plant-derived compounds of the ZINC database was conducted using ZINCpharmer. Screened hits were assessed to evaluate their drug-likeness, pharmacokinetics, detailed binding behavior, and aggregator possibility based on their physiochemical properties and chemical similarity with reported aggregators.

Results: Through virtual screening and in silico pharmacology protocol isosilybin (ZINC30731533) was identified as a lead compound with optimal properties. This compound can be recommended for laboratory tests and further analyses to confirm its activity as protein tyrosine phosphatase nonreceptor type 1 inhibitor.

Conclusion: The present study has identified plant-derived anti-diabetic virtual lead compound with the potential to inhibit protein tyrosine phosphatase non-receptor type 1, which may be helpful to enhance insulin production. This computer-aided study could facilitate the development of novel pharmacological inhibitors for diabetes treatment.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Keywords: Computer-aided drug design; common feature pharmacophore modeling; diabetes mellitus; flavonoids; isosilybin; molecular docking; pharmacokinetics; protein tyrosine phosphatase non-receptor type 1

Document Type: Research Article

Publication date: December 1, 2017

More about this publication?
  • Current Computer-Aided Drug Design aims to publish all the latest developments in drug design based on computational techniques. The field of computer-aided drug design has had extensive impact in the area of drug design. Current Computer-Aided Drug Design is an essential journal for all medicinal chemists who wish to be kept informed and up-to-date with all the latest and important developments in computer-aided methodologies and their applications in drug discovery. Each issue contains a series of timely, in-depth reviews written by leaders in the field, covering a range of computational techniques for drug design, screening, ADME studies, etc., providing excellent rationales for drug development.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more