Skip to main content
padlock icon - secure page this page is secure

CAPi: Computational Model for Apicoplast Inhibitors Prediction Against Plasmodium Parasite

Buy Article:

$68.00 + tax (Refund Policy)

Background: Discovery of apicoplast as a drug target offers a new direction in the development of novel anti-malarial compounds, especially against the drug-resistant strains. Drugs such as azithromycin were reported to block the apicoplast development that leads to unusual phenotypes affecting the parasite. This phenomenon suggests that identification of new apicoplast inhibitors will aid in the anti-malarial drug discovery. Therefore, in this study, we developed a computational model to predict apicoplast inhibitors by applying state-of-the-art machine learning techniques.

Methods: We have used two high-throughput chemical screening data (AID-504850, AID-504848) from PubChem BioAssay database and applied machine learning techniques. The performance of the models were assessed on various types of binary fingerprints.

Results: In this study, we developed a robust computational algorithm for the prediction of apicoplast inhibition. We observed 73.7% sensitivity and 84% specificity along with 81.4% accuracy rate only on 41 PubChem fingerprints on 48 hrs dataset. Similarly, an accuracy rate of 75.8% was observed for 96 hrs dataset. Additionally, we observed that our model has ~70% positive prediction rate on the independent dataset obtained from ChEMBL-NTD database. Furthermore, the fingerprint analysis suggested that compounds with at least one heteroatom containing hexagonal ring would most likely belong to the antimalarial category as compared to simple aliphatic compounds. We also observed that aromatic compounds with oxygen and chlorine atoms were preferred in inhibitors class as compared to sulphur. Additionally, the compounds with average molecular weight >380Da and XlogP>4 were most likely to belong to the inhibitor category.

Conclusion: This study highlighted the significance of simple interpretable molecular properties along with some preferred substructure in designing the novel anti-malarial compounds. In addition to that, robustness and accuracy of models developed in the present work could be utilized to screen a large chemical library. Based on this study, we developed freely available software at http://deepaklab. com/capi. This study would provide the best alternative for searching the novel apicoplast inhibitors against Plasmodium.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Keywords: Plasmodium; QSAR; apicoplast; classification; inhibitor; machine learning; virtual screening

Document Type: Research Article

Publication date: December 1, 2017

More about this publication?
  • Current Computer-Aided Drug Design aims to publish all the latest developments in drug design based on computational techniques. The field of computer-aided drug design has had extensive impact in the area of drug design. Current Computer-Aided Drug Design is an essential journal for all medicinal chemists who wish to be kept informed and up-to-date with all the latest and important developments in computer-aided methodologies and their applications in drug discovery. Each issue contains a series of timely, in-depth reviews written by leaders in the field, covering a range of computational techniques for drug design, screening, ADME studies, etc., providing excellent rationales for drug development.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more