Skip to main content
padlock icon - secure page this page is secure

3D QSAR Studies on Substituted Benzimidazole Derivatives as Angiotensin II-AT1 Receptor Antagonist

Buy Article:

$68.00 + tax (Refund Policy)

This study investigated 3D quantitative structure–activity relationships (QSAR) for a range of substituted benzimidazole derivatives as AngII-AT1 receptor antagonists by comparative molecular field analysis (CoMFA) and comparative molecular similarity indices (CoMSIA). The alignment strategy was used for these compounds by means of Distill function defined in SYBYL X 1.2. The best CoMFA and CoMSIA models were obtained for the training set compounds was statistically significant with leave-one-out (LOO) validation correlation coefficient (q2) of 0.613 and 0.622, cross validated coefficient (r2 cv) of 0.617 and 0.607, respectively and conventional coefficient (r2 ncv) of 0.886 and 0.859, respectively. Both the models were validated by a test set of 18 compounds giving satisfactory predicted correlation coefficient (r2 pred) of 0.714 and 0.549 for CoMFA and CoMSIA models, respectively. Generated 3D QSAR models were used for the prediction of pIC50 of an external dataset of 10 compounds for predictive validation, which gave conventional r2 of 0.893 for CoMFA model, and 0.774 for CoMSIA model. We identified some key features in substituted benzimidazole derivatives, such as the importance of lipophilicity and H-bonding at 2- and 5, 6, 7- position of benzimidazole ring, respectively, for good antagonistic activity. CoMFA and CoMSIA models generated in this work provide useful information for the design of new compounds and helped in prediction of antagonistic activity.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Keywords: 3D QSAR; ARBs; AngII; CoMFA; CoMSIA; Substituted benzimidazole derivatives

Document Type: Research Article

Publication date: September 1, 2013

More about this publication?
  • Current Computer-Aided Drug Design aims to publish all the latest developments in drug design based on computational techniques. The field of computer-aided drug design has had extensive impact in the area of drug design. Current Computer-Aided Drug Design is an essential journal for all medicinal chemists who wish to be kept informed and up-to-date with all the latest and important developments in computer-aided methodologies and their applications in drug discovery. Each issue contains a series of timely, in-depth reviews written by leaders in the field, covering a range of computational techniques for drug design, screening, ADME studies, etc., providing excellent rationales for drug development.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more