Skip to main content
padlock icon - secure page this page is secure

Ligand Based Validated Comparative Chemometric Modeling and Pharmacophore Mapping of Aurone Derivatives as Antimalarial Agents

Buy Article:

$63.00 + tax (Refund Policy)

Chloroquine resistance is nowadays a great problem. Aurone derivatives are effective against chloroquine resistant parasite. Ligand based validated comparative chemometric modeling through 2D-QSAR and kNN-MFA 3DQSAR studies as well as common feature 3D pharmacophore mapping were done on thirtyfive aurone derivatives having antimalarial activity. Statistically significant 2D-QSAR models were generated on unsplitted as well as splitted dataset by MLR and PLS technique. The MLR model of the unsplitted method was validated by two-deep cross validation and 10 fold cross validation for determining the predictive ability. The PLS technique of the unsplitted method was done to compare the significance of these methods. In the splitted method, model was developed on the training set by Y-based ranking method by using the same descriptors and was validated on fifty pairs of the test and the training sets by k-MCA technique. These models generated by using the same descriptors were well validated irrespective of MLR as well as PLS analysis of unsplitted as well as splitted methods and are showing similar results. Therefore, these descriptors and model generated were reliable and robust. The kNN-MFA 3D-QSAR models were generated by three variable selection methods: genetic algorithm, simulated annealing and stepwise regression. The kNN-MFA 3D-QSAR results support the 2D QSAR data and in turn validate the earlier observed SAR results. Common feature 3D-pharmacophore generation was performed on these compounds to validate both 2D and 3D-QSAR studies as well as the earlier observed SAR data. The work highlights the required structural features for the higher antimalarial activity.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Keywords: Antimalarial; Y-based ranking; aurone derivative; chemometric modeling; k-MCA; kNN-MFA; pharmacophore mapping

Document Type: Research Article

Publication date: September 1, 2013

More about this publication?
  • Current Computer-Aided Drug Design aims to publish all the latest developments in drug design based on computational techniques. The field of computer-aided drug design has had extensive impact in the area of drug design. Current Computer-Aided Drug Design is an essential journal for all medicinal chemists who wish to be kept informed and up-to-date with all the latest and important developments in computer-aided methodologies and their applications in drug discovery. Each issue contains a series of timely, in-depth reviews written by leaders in the field, covering a range of computational techniques for drug design, screening, ADME studies, etc., providing excellent rationales for drug development.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more