Skip to main content
padlock icon - secure page this page is secure

Multimode Methods Applied on MIA Descriptors in QSAR

Buy Article:

$68.00 + tax (Refund Policy)

Since the introduction of physicochemical descriptors to derive useful QSAR (quantitative structure-activity relationship) models, some regression methods have been applied to linearly correlate dependent (bioactivities) and independent variables. Multiple linear regression (MLR) has been widely used when the number of samples (rows) exceed the amount of descriptors (columns), whilst partial least squares (PLS) is the most commonly applied regression method in 3D QSAR (e.g. CoMFA and related methods), where a large number of descriptors are generated. The recently implemented MIA-QSAR (Multivariate Image Analysis applied to QSAR) method is a especial (not only) case in which the descriptors (pixels) for each active compound result in a three-way array after grouping samples to give a data set. Such array may be properly treated by using N-way methods, such as multilinear PLS (N-PLS) and parallel factor analysis (PARAFAC). However, these methods have not been appropriately explored in QSAR studies, despite their supposed advantages over well established methods. Thus, this review formally details the MIA-QSAR approach prior to presenting two promising multimode methods to be applied on MIA descriptors, namely N-PLS and PARAFAC. Also, the suitability of such methods is discussed in terms of application to a case study (a series of anti-HIV compounds) and comparison to traditional (bilinear) PLS and docking studies.

No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Keywords: Multiple linear regression (MLR); QSAR (quantitative structure-activity relationship); anti-HIV compounds); multimode methods; parallel factor analysis (PARAFAC); partial least squares (PLS)

Document Type: Research Article

Publication date: December 1, 2008

More about this publication?
  • Current Computer-Aided Drug Design aims to publish all the latest developments in drug design based on computational techniques. The field of computer-aided drug design has had extensive impact in the area of drug design. Current Computer-Aided Drug Design is an essential journal for all medicinal chemists who wish to be kept informed and up-to-date with all the latest and important developments in computer-aided methodologies and their applications in drug discovery. Each issue contains a series of timely, in-depth reviews written by leaders in the field, covering a range of computational techniques for drug design, screening, ADME studies, etc., providing excellent rationales for drug development.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more