Skip to main content
padlock icon - secure page this page is secure

The Rational Design of Bacterial Toxin Inhibitors

Buy Article:

$68.00 + tax (Refund Policy)

Protein toxins play key roles in many infectious diseases of humans which are caused by bacteria. In some cases the toxin alone is directly responsible for the majority of the symptoms of the disease (e.g. tetanus, anthrax, diphtheria). In others the toxin is one of an arsenal of virulence factors which allow the bacterium to cause disease. Antibiotics are currently the mainstay for the treatment of bacterial infections. However, increasing levels of antibiotic resistance and the indiscreet nature of antibiotic therapy are limitations. Prior to the availability of antibiotics, antisera against toxins were often used to treat bacterial disease. Nowadays, animal-sourced products, such as antisera, are generally not acceptable for use in humans. Against the background there is an increasing interest in the development of low molecular weight inhibitors of toxins for the treatment of disease. For some toxins, like anthrax toxin, botulinum toxin and shigella toxin, low molecular weight inhibitors demonstrate proof of principle of this concept. For most other toxins the design and development of inhibitors is now a very real prospect; the crystal structures of many toxins are available, and in most cases the identity of the substrate or receptor is known. This article describes in detail the rational design of bacterial toxin inhibitors.

No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Keywords: Antitoxin; anthrax toxin; botulinum toxin; shiga-toxin; toxin inhibitor

Document Type: Research Article

Affiliations: Defence Science and Technology Laboratory, CBS Porton Down, Salisbury, Wiltshire, SP4 0JQ,United Kingdom.

Publication date: March 1, 2007

More about this publication?
  • Current Computer-Aided Drug Design aims to publish all the latest developments in drug design based on computational techniques. The field of computer-aided drug design has had extensive impact in the area of drug design. Current Computer-Aided Drug Design is an essential journal for all medicinal chemists who wish to be kept informed and up-to-date with all the latest and important developments in computer-aided methodologies and their applications in drug discovery. Each issue contains a series of timely, in-depth reviews written by leaders in the field, covering a range of computational techniques for drug design, screening, ADME studies, etc., providing excellent rationales for drug development.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more