Skip to main content
padlock icon - secure page this page is secure

Carnosic Acid, Tangeretin, and Ginkgolide-B Anti-neoplastic Cytotoxicity in Dual Combination with Dexamethasone-[anti-EGFR] in Pulmonary Adenocarcinoma (A549)

Buy Article:

$68.00 + tax (Refund Policy)

Background: Traditional chemotherapeutics of low-molecular weight diffuse passively across intact membrane structures of normal healthy cells found in tissues and organ systems in a non-specific unrestricted manner which largely accounts for the induction of most sequelae which restrict dosage, administration frequency, and duration of therapeutic intervention. Molecular strategies that offer enhanced levels of potency, greater efficacy and broader margins-of-safety include the discovery of alternative candidate therapeutics and development of methodologies capable of mediating properties of selective “targeted” delivery.

Materials and Methods: The covalent immunopharmaceutical, dexamethasone-(C21-phosphoramidate)-[anti- EGFR] was synthesized utilizing organic chemistry reactions that comprised a multi-stage synthesis regimen. Multiple forms of analysis were implemented to vadliate the successful synthesis (UV spectrophotometric absorbance), purity and molar-incorporation-index (UV spectrophotometric absorbance, chemical-based protein determination), absence of fragmentation/polymerization (SDS-PAGE/chemiluminescent autoradiography), retained selective binding-avidity of IgG-immunoglobulin (cell-ELISA); and selectively “targeted” antineoplastic cytotoxicity (biochemistry-based cell vitality/viability assay).

Results: The botanicals carnosic acid, ginkgolide-B and tangeretin, each individually exerted maximum antineoplastic cytotoxicity levels of 58.1%, 5.3%, and 41.1% respectively against pulmonary adenocarcinoma (A549) populations. Dexamethasone-(C21-phosphoramidate)-[anti-EGFR] formulated at corticosteroid/ glucocorticoid equivalent concentrations produced anti-neoplastic cytotoxicity at levels of 7.7% (10-9 M), 26.9% (10-8 M), 64.9% (10-7 M), 69.9% (10-6 M) and 73.0% (10-5 M). Ccarnosic acid, ginkgolide-B and tangeretin in simultaneous dual-combination with dexamethasone-(C21-phosphoramidate)-[anti-EGFR] exerted maximum anti-neoplastic cytotoxicity levels of 70.5%, 58.6%, and 69.7% respectively.

Discussion: Carnosic acid, ginkgolide-B and tangeretin botanicals exerted anti-neoplastic cytotoxicity against pulmonary adenocarcinoma (A549) which additively contributed to the anti-neoplastic cytotoxic potency of the covalent immunopharmaceutical, dexamethasone-(C21-phosphoramidate)-[anti-EGFR]. Carnosic acid and tangeretin were most potent in this regard both individually and in dual-combination with dexamethasone-(C21- phosphoramidate)-[anti-EGFR]. Advantages and attributes of carnosic acid and tangeretin as potential monotherapeutics are a wider margin-of-safety of conventional chemotherapeutics which would readily complement the selective “targeted” delivery properties of dexamethasone-(C21-phosphoramidate)-[anti-EGFR] and possibly other covalent immunopharmaceuticals in addition to providing opportunities for the discovery of combination therapies that provide heightened levels of anti-neoplastic efficacy.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Keywords: Carnosic acid; anti-EGFR; anti-neoplastic cytotoxic potency; covalent immunopharmaceuticals; dexamethasone; ginkgolide-B; selective “targeted” delivery; tangeretin

Document Type: Research Article

Publication date: April 1, 2019

More about this publication?
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more