Skip to main content

Dynamic Compensation of Electrical Runout in Eddy Current Contactless Measurements of Non-Stationary Ferromagnetic Target

Buy Article:

$107.14 + tax (Refund Policy)

Industrial measuring systems nowadays are frequently based on eddy current sensors. These sensors are highly accurate, with high resolution, have good bandwidth and they are very robust against contamination in an industrial working environment. A major drawback of this technology is sensitivity of eddy current sensors to electromagnetic anisotropy of target material. This problem becomes critical in non stationary target applications, where measuring location is moving in the plane orthogonal to the sensor main axis. Compensation of induced error by lookup table is impractical due to non-stationarity of electromagnetic properties of target material. The other possibility is to smooth electromagnetic anisotropy by mechanical alteration of target surface. Unfortunately, this approach is very delicate and frequently leads to deterioration of initial situation. In this paper a new approach is presented. It is based on multiresolution signal decomposition using discrete wavelet transform, recognition of the component which is generated by electromagnetic anisotropy, and removing this component from eddy current sensor readings. This approach is dynamical in its essence and therefore it is capable of handling the non-stationary properties of electromagnetic anisotropy. The proposed method is experimentally verified. Achieved results show its applicability in real industrial conditions.

Keywords: DYNAMIC COMPENSATION; EDDY CURRENT SENSOR; ELECTRICAL RUNOUT; MECHANICAL RUNOUT

Document Type: Research Article

Publication date: 01 April 2009

More about this publication?
  • The growing interest and activity in the field of sensor technologies requires a forum for rapid dissemination of important results: Sensor Letters is that forum. Sensor Letters offers scientists, engineers and medical experts timely, peer-reviewed research on sensor science and technology of the highest quality. Sensor Letters publish original rapid communications, full papers and timely state-of-the-art reviews encompassing the fundamental and applied research on sensor science and technology in all fields of science, engineering, and medicine. Highest priority will be given to short communications reporting important new scientific and technological findings.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content