Skip to main content
padlock icon - secure page this page is secure

Parametric Model Reduction for Fast Simulation of Cyclic Voltammograms

Buy Article:

$106.38 + tax (Refund Policy)

Model order reduction is a well-established technique for fast simulation of large-scale models based on ordinary differential equations, especially those in the field of integrated circuits and micro-electro-mechanical systems. In this paper, we propose the use of parametric model reduction for fast simulation of a cyclic voltammogram. Instead of being considered as a time varying system, the model for a cyclic voltammogram is treated as a system with a parameter (applied voltage) which is to be preserved during model reduction. Because voltage is preserved in the symbolic form during model reduction, we can simulate the cyclic voltammogram with a reduced system and therefore invest much less time and memory as compared with direct simulation based on the original large-scale model. We present our approach for a case study based on scanning electrochemical microscopy.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics


Document Type: Research Article

Publication date: June 1, 2006

More about this publication?
  • The growing interest and activity in the field of sensor technologies requires a forum for rapid dissemination of important results: Sensor Letters is that forum. Sensor Letters offers scientists, engineers and medical experts timely, peer-reviewed research on sensor science and technology of the highest quality. Sensor Letters publish original rapid communications, full papers and timely state-of-the-art reviews encompassing the fundamental and applied research on sensor science and technology in all fields of science, engineering, and medicine. Highest priority will be given to short communications reporting important new scientific and technological findings.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more