Skip to main content

Bacterial Cellulose-Based Three-Dimensional Carbon Nanofibers for the Sensitive and Selective Determination of Uric Acid

Buy Article:

$107.14 + tax (Refund Policy)

In recent years, the interest in the optimization of novel nanomaterials for electrodes preparation has received tremendous attention. This article describe about develop an electrochemical sensor for to detect the uric acid (UA). Firstly, the sensing materials of carbon nanofibers (CNFs) were prepared through an economical approach under freeze-dried, mainly for CNFs were successfully synthesized through carbonized biomass green bacterial cellulose (BC) at 800 °C. The obtained CNFs were used to modify the glassy carbon electrode (GCE), and have an excellent electrochemical response towards the UA. Under the optimized condition, the current response of UA at the CNFs/GCE increased also the peak current linearly with the UA concentration, the limitation of detection (LOD) calculated as 0.29 μM (S/N = 3), revealing the a high sensitivity and an broader analytical range of the as-prepared CNFs/GCE. Finally, the proposed electrochemical sensor can be used for detection of UA in human urine with the satisfactory result.

Keywords: BACTERIAL CELLULOSE; CARBON MATERIALS; SELECTIVE DETERMINATION; URIC ACID; URINE SAMPLE

Document Type: Research Article

Publication date: 01 November 2018

More about this publication?
  • Science of Advanced Materials (SAM) is an interdisciplinary peer-reviewed journal consolidating research activities in all aspects of advanced materials in the fields of science, engineering and medicine into a single and unique reference source. SAM provides the means for materials scientists, chemists, physicists, biologists, engineers, ceramicists, metallurgists, theoreticians and technocrats to publish original research articles as reviews with author's photo and short biography, full research articles and communications of important new scientific and technological findings, encompassing the fundamental and applied research in all latest aspects of advanced materials.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content