Skip to main content
padlock icon - secure page this page is secure

Growth of Photoluminescent Cadmium Sulphide Quantum Dots from Soluble Single Source Precursors in Solution and in Film

Buy Article:

$106.73 + tax (Refund Policy)

Photoluminescent cadmium sulphide (CdS) quantum dots (QDs) were successfully obtained by a single-source route via a non-injection one-pot approach using octadecene (ODE) as a non-coordinating solvent and myristic acid (MA) as capping agent. The synthetic scheme makes use of two metal-organic molecules belonging to the xanthate family, cadmium diethyl-xanthate (CdDEX) and cadmium dibutyl-xanthate (CdDBX) single-source precursors. The thermal conversion of both xanthates was explored in the temperature range of 150 °C–180 °C. Following this heat treatment material made from both precursors showed photoluminescence from the direct band gap having a PLQY from 5% (CdDEX) to 13% (CdDBX). The nucleation and growth of CdS nanoparticles in thin solid films was studied by transmission electron microscopy. The surface topography and morphology of the thin films was observed by atomic force microscopy.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Keywords: CDS QUANTUM DOTS; FLUORESCENCE; OPTICAL PROPERTIES; PHOTOLUMINESCENCE QUANTUM YIELD (PLQY); SINGLE-SOURCE PRECURSORS

Document Type: Research Article

Publication date: January 1, 2015

More about this publication?
  • Science of Advanced Materials (SAM) is an interdisciplinary peer-reviewed journal consolidating research activities in all aspects of advanced materials in the fields of science, engineering and medicine into a single and unique reference source. SAM provides the means for materials scientists, chemists, physicists, biologists, engineers, ceramicists, metallurgists, theoreticians and technocrats to publish original research articles as reviews with author's photo and short biography, full research articles and communications of important new scientific and technological findings, encompassing the fundamental and applied research in all latest aspects of advanced materials.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more