Skip to main content
padlock icon - secure page this page is secure

Isomerization-Induced Phase Separation of a Mixture of Monomer, Azobenzene, and Liquid Crystals

Buy Article:

$106.51 + tax (Refund Policy)

We propose a novel phase separation method, referred to as isomerization-induced phase separation (IIPS), applicable to a mixture comprising monomers, nematic liquid crystal (LC), and azobenzene LC (azo-LC). The resulting structures, termed as monomer-dispersed gel LCs (MDGLCs), can be formed by both dark IIPS and bright IIPS, which indicates that IIPS occurs without and with light irradiation, respectively. The MDGLC structures in a cell are reconstructed, indicating that the IIPS is a repeatable phase separation process. A cell filled with the mixture initially exhibits a scattering mode and can be switched to multi-stable transparent states after UV irradiation. The switchability is due to the isothermal phase transition resulting from trans- to cis-isomerization processes. An application of the IIPS on an optically controllable scattering mode light shutter, having the advantages of multi-stability, optically switchability, polarizer-free, with high contrast ratio, and other properties, is experimentally demonstrated. Conversely, the transparent mode of MDGLCs can be switched back to the scattering mode by green-light illumination to achieve bright IIPS, or by thermal treatment. Grayscales (multi-stable states) can also be elicited by UV illumination under various durations. The selectively unpolymerized monomer and azo-LC in this system are the keys to achieve high-performance multi-stable scattering MDGLCs.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics


Document Type: Research Article

Publication date: January 1, 2014

More about this publication?
  • Science of Advanced Materials (SAM) is an interdisciplinary peer-reviewed journal consolidating research activities in all aspects of advanced materials in the fields of science, engineering and medicine into a single and unique reference source. SAM provides the means for materials scientists, chemists, physicists, biologists, engineers, ceramicists, metallurgists, theoreticians and technocrats to publish original research articles as reviews with author's photo and short biography, full research articles and communications of important new scientific and technological findings, encompassing the fundamental and applied research in all latest aspects of advanced materials.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more