Skip to main content
padlock icon - secure page this page is secure

A Quantitative Approach to Characterize Total Ionizing Dose Effect of Periphery Device for 65 nm Flash Memory

Buy Article:

$106.51 + tax (Refund Policy)

To evaluate the total ionizing dose (TID) response of periphery devices with 65 nm flash memory, the TID effects of the main and parasitic transistor have been investigated based on the proposed novel parameter extraction approach. By analyzing post-radiation behavior of the device's drain current and interface trap density, it has been proven that the parasitic transistor demonstrates stronger radiation dependence than the main transistor. With the proposed approach, the roles of the parasitic transistor and main transistor in the TID effect are quantitatively characterized. For a W =10 μm HVN device, the main transistor V th shows a shift of <0.1 V with a TID of 100 krad (Si), while the parasitic transistor shows shift >0.5 V with 100 krad (Si) radiation. It is concluded that the net positive charge accumulating in the shallow trench isolation oxide is responsible for the TID induced leakage and the V th shift in the flash technology periphery device.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics


Document Type: Short Communication

Publication date: March 1, 2018

More about this publication?
  • Nanoscience and Nanotechnology Letters (NNL) is a multidisciplinary peer-reviewed journal consolidating nanoscale research activities in all disciplines of science, engineering and medicine into a single and unique reference source. NNL provides the means for scientists, engineers, medical experts and technocrats to publish original short research articles as communications/letters of important new scientific and technological findings, encompassing the fundamental and applied research in all disciplines of the physical sciences, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more