Skip to main content
padlock icon - secure page this page is secure

Synthesis and Characterization of Bifunctional Ethenylene Bridged Mesoporous Organoaluminosilicates

Buy Article:

$106.51 + tax (Refund Policy)

Bifunctional mesoporous organosilicas having −CH=CH− bridges and aluminium in tetrahedral coordination with tailorable pore sizes have been synthesized using a one-step templating method using cationic surfactants of different chain lengths. Unlike the conventional EtOH-HCl template extraction process, EtOH–NH4NO3 was used as the surfactant-extracting medium and chemical analysis results suggest that through this procedure the mesoporous structure can be retained and dealumination can be minimized. The surfactant-extracted mesoporous solids display high surface area, pore volume and the pore size of the material varies in the range 2.6–3.6 nm, with respect to the alkyl chain length of the cationic surfactant. XRD and nitrogen physisorption studies further proved that the organosilicas are hydro thermally stable than the conventional Al-MCM-41 materials and their better stability is attributed to the thick pore walls as well as due to the presence of hydrophobic bridging ethenylene groups in the wall positions. The coupling of Al(4) with −CH=CH− bridges offer new prospects for the application of periodic mesoporous organosilicas in heterogeneous catalysis.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Keywords: ALUMINIUM; CATIONIC SURFACTANTS; HYDROTHERMAL STABILITY; ORGANOSILICAS

Document Type: Short Communication

Publication date: August 1, 2011

More about this publication?
  • Nanoscience and Nanotechnology Letters (NNL) is a multidisciplinary peer-reviewed journal consolidating nanoscale research activities in all disciplines of science, engineering and medicine into a single and unique reference source. NNL provides the means for scientists, engineers, medical experts and technocrats to publish original short research articles as communications/letters of important new scientific and technological findings, encompassing the fundamental and applied research in all disciplines of the physical sciences, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more